:
i

A246 940 .
\\ll\l\\\|\|\\I\\l\l\ll\\\l\I\\\I\I\\II\\\\I\ * @
NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

THE RELAY RACE APPROACH

Thesis Advisor:

SECURING APPLICATIONS
IN PERSONAL COMPUTERS:
by
James Michael Wright

September, 1991
Moshe Zviran

Approved for public release; distribution is unlimited

92-05297

g2 3 02 051 AR

- UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS
UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

63. NAME OF PERFORMING ORGANIZATION 6b OFFICESYMBOL | 7a. NAME OF MONITORING ORGANIZATION

Naval Poitgraduate School (if applicable) Naval Postgraduate School
55
6¢. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-6000
8a NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
8¢. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
Program tlement No Project No Task No Work Unit Accession
Number
11 TITLE (Include Security Classification)
SECURING APPLICATIONS IN PERSONAL COMPUTERS: THE RELAY RACE APPROACH
12 PERSONAL AUTHOR(S) Wright,Jumes M.
13a. TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (year, month, day) |15 PAGE COUNT

Muster’s Thesis From To September 1991 107
16 SUPPLEMENTARY (JOTATION

The views expressed in this thests are those of the author and do not reflect the official policy or pusition of the Department of Defense or the U.S.
Government.

17 COSATICODES 18 SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Security, Pecsonal Computer, Applicaion Level, Microcomputer.

19 ABSTRACT (continue on reverse if necessary and identify by block number)

This Thesis reviews the increasing need for security in a personal computer (PC) environment and proposes a new approach for securing PC
apphications at the application luyer. The Relay Race Approuch extends two standard approuches: data encryplion and password access control at
the main program level, to the subprogram level by the use of a special parameter, the “Baton.” The upplicability of this approach is demonstrated
wn an oniginal Basic application and an existing DbaselV apphication, representing both third generation language (3GL.) and fourth generation
language (4GL) environments. The Approach can add Lo overall network security in the PC LAN environment as well The Appreoach is

successful and propused enhancements can strengthen the Approach.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

__E UNCLASSIFIED/UNLIMITED D SAME AS REPORI D DHC USERS Unclassfied

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area code) 22¢ OFFICY SYMBOL
Moshe Zviran 408-646 2459 AS/LV

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE.

All other editions are obsulete Unclassified

RRCARR T
RN}

3;:%&: s

G ARy
L ENT

Approved for public release; distribution is unlimited.

Securing Applications in Personal Computers:
The Relay Race Approach

by
James Michael Wright
Lieutenant Commander, United States Navy
B.S., University of Florida, 1980

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SYSTEMS MANAGEMENT

from the
NAVAL POSTGRADUATE SCHOOL
September 1991
) ! . . . : L _j
Author; \ . L el booesith
J ames Michael Wright

/
| ﬂﬂh AR

Approved by:

Mosli vnr‘*ﬁ"l‘}”e%s Advnsor |)
NU/MRY

- Willianrd-Haga, Second Reader é[

David R. Whippl%,/Cl}airman
Department of Administrative Sciefices

il

g ST g bR A D
o L

ABSTRACT

This Thesis reviews the increasing need for security in
a personal computer (PC) environment and proposes a new
approach for securing PC applications at the application
layexr. The Relay Race Approach extends two standard
approaches: data encryption and password access control at
the main program level, to the subprogram level by the use
of a special parameter, the "Baton". The applicability of
this approach is demonstrated in an original Basic
application and an existing Dbase IV application,
representing both third generation language (3GL) and fourth
generation language (4GL) environments. The Approach can
add to overall network security in the PC LAN environment as
well. The Approach is successful and proposed enhancements

can strengthen the Approach.

Accasion For)

NTIS CRAS i

DTIC TAB a

Uuan: ounced 0

Justification

By .

Dist ibution)
Avaiabiiity Codes

. Avail and jor

Dist Special

A-l

iii

— .
Y LA A P
. N s

I

Fordy % bRyt
e N

©

IIO

III.

Iv.

A.

B.

TABLE OF CONTENTS

HARDWARE ., « c s e cevvvvonscssosnonosssnssssssassssans .5
SOFTWARE.c0o0c0e0eann cesecenae Cesesecsreerene 7
1. Operating System.......ccviienerreennrnonans 8
2. Utilities............... et et 10
3. Applications.........ovvevunn B ¥4
0 - - e eea teeseesesesannn 13
PERSONNEL....¢ccc0vevns e e s e st e s 14
RELAY RACE APPROACH. /v v evreentsosttoenrsassonsnns 15
INTRODUCTION..... Ce e e eseter et aesasenas ...15
1. Application Access Control......cev0eeeves 15
2. Data File Security.....civeevevsnressecaasaslb
3. Intra—-application Control.......ccvvveeu...16
IMPLEMENTATION CONCEPTS.t ivuinenveecasesonessalB
1. ‘:Password Storage......cciveviinnanns ceeee..18
\2y.f Baton and Baton PasSing.....veeceveeveroes.20

3.+ Data File Encryption.......coevvvvinennnnns 21

APPLICATION IN A THIRD GENERATION LANGUAGE

ENVIRONMENT..........o0vn.. e Ceea Ceeeas vee.a22

A.

BO

c.

ENVIRONMENT DESCRIPTION. o v vt vt eernononesennnnns 22
APPLICATION DESCRIPTION............ e .22
TRANSFORMING CONCEPTS TO CODE......uvnrvvnvnnn, 23

1, ‘Handling Passwords and the Baton........... 23

iv

VI.

VII.

2. éalled Subprogram Requirements......... ceee29
3. Data Encrypting, Decrypting and Access
Requirements....... Cetecseaetseeasets e enns 30
a. Data Encryption Utility...............30
b. Data File Manipulation.......cce00....30
c. System Administration................. 32
APPLICATION IN A FOURTH GENERATION LANGUAGE
ENVIRONMENT............ . 2
A, ENVIRONMENT DESCRIPTION. ... v0esevssvssonssceseo34
B. APPLICATION DESCRIPTION. ...:vtsevsscrcsosensssass3D
cC. TRANSFORMING CONCEPTS TO CODE......oottneneencas 37
1. Handling Passwords and the Baton...........37
2, Called Subprogram Requirements.............39
3. Data Encrypting, Decrypting and
Administration.......oieveivnrnnrrneanssaa39

THE RELAY RACE APPROACH AND LOCAL AREA NETWORK

SECURITY...iieeevinnnnnnennans Seestes e R 2 |
A, ELEMENTS AND FUNCTIONALITY OF A LAN.....vvveeee 41
B. SECURITY IN LANS.....citetreosessasosassanssones 41
c. ENHANCING OVERALL LAN SECURITY. ... ivevvevesnns ... 42
CONCLUSIONS . . o st vttt vettonnsosssssssossassssessnsssssas 44
A. THE NEED.......ioveieeeeenn C et et e s e 44
B. REQUIRED ATTRIBUTES.ttt ettt nanssssonsnsas 44
C. POSSIBLE ENHANCEMENTS.......¢cc000evns oo ve..45

1. Unique Application copies.........co.vvun 45

v

2. Deceptive and Dynamic Batone.............. 46
v . 3. Disk File Residue Eliminators......... c.. .47
?i APPENDIX A — THIRD GENERATION SOURCE CODE. a8
{“' APPENDIX B — FOURTH GENERATION SOURCE CODE................54
% . LIST OF REFERENCES. . -« v nveneeneee e e, 97
%* BIBLIOGRAPHY . . ot vvereereennennennnnns e, e 98
? INITIAL DISTRIBUTION LIST........ e e, 100

vi

RRER S o R A At

I. INTRODUCTION

The proliferation of information systems in virtually
all areas of business and government has increased the
importance of computer security issues. As more people
bécome computer literate, the risks of ill-intentioned
individuals obtaining unauthorized access or violating the
integrity and validity of data grow. Potential solutions to
computer security risks are varied and numerous because
different types of computer hardware, operating systems, and
application software have different security strengths and
weaknesses.

Different environments and applications require varying
levels of security and security measures. Some environments
need to target their security measures toward threats of
accidental data corruption while others are primarily
concerned with unauthorized access to sensitive information.
Another computer security issue is system protection from
viruses, worms, trojan horses, etc.

Widespread use of personal computers and growth of end
user computing have introduced myriad security concerns.
Almost every personal computer user is likely to view virus
protection, data backup, floppy disk control, and data
encryption as primary computer security issues (Murray 1989,

Stephenson 1989, Brown 1989). However, many personal

computer security concerns for the most part remain largely

unaddressed at this time (Pfleeger, 1989). Moreover, the

growing population of knowledgeable personal computer users

I

incre.ses the numerical chances of security breaches

involving personal computers.

SV

e

L

This research explores the unique security issues

ANCES

5 involving personal computers and proposes a new approach for

securing personal computer applications and data.

II. SECURITY IN PERSONAL COMPUTERS

The use of personal corputers, including microcomputers,
office automation workstations and intelligent workstations,
has spread substantially in recent years. Since the
i-;.roduction of these systems, in the late 1970s, they have
undergone far reaching changes and improvements which have
brought them almost to the level of performance of large
computers (Giladi and Zviran, 1989). Analysis of the
development and characteristics of personal computers and
large systems shows that the processing speed of present
personal computers is equal or even superior to that of the
main large systems that were in use during the late 1970s
(e.g., IBM 370 series).

The basic security problems for personal computers are
the same as those for every other computing environment:
applications require secrecy, integrity and availability
applied to programs and data. However, security problems of
personal computers are more serious than those of mainframes
or mini computers due to the lack of security tools and
mechanisms. Many of the hardware and software facilities
important in assuring security are inappropriate and
unavailable ir. the personal computer environment.

The security problem of personal computers is becoming

even more meaningful as these machines are being integrated

T
&R e
¥ Ju

into computer networks. While many personal computers are
being used in a stand-alone mode, others are being connected
to networks as front-end terminals and processors, becoming
a weak link in the network security chain. This problem
becomes more crucial in the open system interconnection
(OSI) environment. As the goal of an 0OSI environment is
approached it becomes easier and more economical to connect
computers and share resources. Logically, more PCs will be
integrated into network systems. As a result, national
organizations as well as users are becoming concerned with
the vulnerability of personal computers (NCSC, 1985; NTISSC,
1987; Post and Kievit, 1991).

As the name implies, personal computers were initially
envisioned as being used by one person. Simple physical
security measures would supply the necessary measure of
security. This single user view is evident in the design of
the popular personal computer operating system, MS-DOS. 1In
most organizations today however, PCs are not personally
allocated (Gogan, 1991). In view of this, more security is
sometimes required. There is a definite l:sck of tools to
provide security for personal computers.

As the popularity and power of personal computers grows,
more people want and obtained access to them. Personal
computers distribute computing power to virtually all
physical locations within an organization, unlike large

4

machines. For the first time the computing power is not
under the control of computer professionals. Persons
responsible for mainframe or mini-computer security have
linited control over how personal computers were being used
within organizations. Generally, personal computer users
lack the sensitivity toward computer security issues
exhibited by mainframe and mini computer operators. The
personal and organizational computer security mechanisms
evident in large systems are not automatically in place for

personal computers.

A. HARDWARE

The first IBM personal computer was built around the
8088 processor. This processor had no protection scheme.
All memory locations were open and unguarded. There were no
privileged instructions available only to the operating
system or trusted kernel. The newer 80286 and 80386 CPUs
have stronger protection capabilities but the MS-DOS
operating system is not capable of exploiting them (Post,
1991; Pfleeger, 1989).

Common hardware add—on security measures include
physical security measures, security modules, and locks and
keys. Each provides various degrees of security against

certain types of threats while exhibiting weaknesses against

others.

prrveryey

3 a, e ©
o e

Locking doors to rooms containing computers is effective
but in most cases not feasible. Too often it is necessary
to allow open access to a room containing the computer.
Disconnecting and locking the computer’s keyboard in a desk
drawer or cabinet provides good security without limiting
access to an office space. Unfortunately, physical security
measures limit access to all of the computer’s programs, not
just the sensitive ones. This weakness can lead to under-
use of computer assets.

Security modules are expansion boards which plug into
industry standard slots on personal computer motherboards to
provide security. They usually perform in concert with
software utilities. Security modules usually prevent
booting from other than the fixed hard disk drive. This
ensures that access control software stored on the fixed
disk is run upon boot-up. Because the modules must plug
into standard slots for compatibility reasons it would be
easy for an intruder to locate and remove them. Many casual
personal computer users possess sufficient knowledge to
quickly open a computer’s case, identify specific expansion
boards and remove the security module (Stephenson, 1989;
Zarger, 1988).

Key type locks coupled to power switches are often used
in personal computers as security measures. These locks are
an "all or nothing" device. Those who have a key have

6

access to all programs and data and those who do not have a
key have access to nothing. They cannot provide universal
access to public applications and provide security for
private programs and data. Additionally, locking power
switches can be defeated quite easily if the computer is
housed in a standard case. Once the standard "easy access"
case is opened, it is a simple matter to "hot wire" the
switch to defeat the lock.

Hardware security solutions are enhanced when cases and
fasteners are used which are non-standard and require
special tools cr keys for access or removal. Additionally,
epoxy coatings are useful in protecting hardware items from
tampering measures such as hot wiring switches. As with
most security issues, using optimum combinations of security
measures greatly enhances personal computer security

effectiveness.

B. SOFTWARE

Any computer system has, usually, two different types of
software: an operating system and application programs. The
operating system consists of the system programs, command
interpreter, and utilities. The operating system is the

focal point for exploring security issues. Application

programs are those which accomplish processing desired by

the computer user. Application programs make calls to, or
use, the operating system to accomplish lower level tasks.
1. Operating Systems

The operating system is the inner-most software
layer of a computer system according to the "virtual
machine" model (Tanenbaum, 1990). It accomplishes tasks for
users and/or the application programs and shields them from
complex hardware details. Transparent to users and
applications, the function of the operating system is to
present the user with the equivalent of an extended machine
or virtual machine that is easier to program then the
underlying hardware. 1Its primary task is to keep track of
resource usage, to grant resource requests and account for
their usage, and to mediate conflicting requests from
different programs and users (Tanenbaum, 1987).

At their advent, personal computers were initially
equipped with 4 KB of main memory. The operating system had
to be small encugh to be loaded into this small memory space
and still leave room for an application program to run. The
early developers of personal computers and their operating
systems did not expect these machines to grow in popularity
as they have. The operating system was written to provide
compactness and functionality in a "personal" environment.
This meant one user, one program at a time. Under MS-DOS,
anyone with basic knowledge can access and/or change any

8

file or memory location. The current trend is toward
personal computer power houses shared by several workers
able to run several applications simultaneously utilizing up
to 8 MB of main memory. With multiple users instead of the
envisioned personal use, MS-DOS does not provide any measure
of security. 1In examining MS-DOS it is clear that it has
limitations which cripple its capability to grow into a
full-fledged operating system capable of supporting and
managing systems which are now in demand.

MS-DOS’s major limitation is that when conceived, it
allotted only enough bits in its address format to access a
maximum of 640 kilobytes of main memory directly. This
limit remains in place today because of market pressures for
downward compatibility. The most powerful applications
programs tend to use most of the 640 kb of memory leaving
only enough for the underlying operating system. To install
security mechanisms in MS-DOS would undoubtedly reduce the
memory space available for use by application programs to an
even lower value. It seems that the marxcet pressure for
freeing up memory for applications is far greater than any
pressure to add security functions to MS-DOS.

Although most operating systems for large systems
provide adequate security functions, MS-DOS continues to
serve as the personal computer standard with virtually no

security capability. Market pressure for compatibility and

9

| S

maximum application space will defeat any move to retrofit
MS~DOS with security functionality.
2. Utilities

Utilities are separate system programs that
accomplish tasks for users. Their normal function is system
management. Since they are optional, commercial software
programs are not written to use them. Utility programs are
very important in security of personal computer systems.
Because the operating system has no security capability,
personal computer users often use utility programs to
protect their data and programs. There are several
different ways in which utility programs are commonly used
for security in the personal computer environment. These
include encryption of data, password hard disk drive locks
with or without hardware locks, and disk residue
eliminators. The best commercially available solutions
include elements of all three (Stephenson, 1989).

Encryption of data using utility programs provides
excellent security of data. The application program can be
run by intruders but the data they receive will be nonsense
unless first decrypted. Encryption and decryption can be
accomplished automatically using batch command files. There
are two limitations which come to mind in using data
encryption utilities. Data file encryption and decryption
are disk intensive activities and consequently are very

10

slow. Additionally, simply securing the data does not keep
intruders from running the application program. It simply
keeps the intruder from understanding the data. In some
cases it may be desirable to ensure intruders are unable to
run the application program at all.

Password hard disk drive boot locks are programs
which require password authentication to boot and
subsequently access the hard drive. They are fast, compact
and work well against casual, novice intrusion attempts.
Without hardware enhancements, however, they can be bypassed
if the intruder boots the computer from a bootable MS-DOS
floppy (Stephenson, 1989).

Additionally, access to even non-sensitive programs
on the protected system requires password authentication.
This limits the use of computer resources to trusted
password holders only. In many cases it is desirable to
secure only a portion of the functions the personal computer
helps perform.

Other utilities rid secondary memory of residue.
When files on personal computers are deleted their data
remains. The operating system simply deletes the file from
the directory, rendering it unlocatable. Intruders can read
or copy portions of the memory media in search of sensitive
data. Simply deleting files does not protect the
information. Utilities such as Norton’s wipe disk and wipe

11

oy TR

file rewrite the disk or file entirely with meaningless
data. This destroys all residue left from sensitive files.

These types of utilities are often bundled with
hardware which disallows booting from any disk except the
one protected by the software.

3. Applications

Application programs are the outer layer of software
in the virtual machine model. The application software is a
program which interfaces with the user and ensures that the
tasks the user wishes to accomplish are completed. The
application program makes calls to the operating system to
accomplish low level tasks in order for the application to
accomplish tasks initiated by the user. The application
software is shielded from hardware details by the operating
system.

The operating system, MS-DOS, provides no security
capability and utilities leave possible back doors and
require password access procedures for all applications. 1If
application programs provide their own security capability
only programs which require security would require passwords
for access. Moreover, common back doors associated with
security utility programs are closed to intruders when
application programs contain protection schemes.

Application programs that need no protection are not limited
by running under a larger, hypothetical, security-capable

12

Bt e AL s a it

operating system which would use more of the 640 kb main
memory than the unprotected MS-DOS. A minor drawback to
applications providing their own protection is that the
consequential increase in program size occurs in each
secured pplication program. This is a minor drawback as
the additional required disk storage space would small. The
additional RAM would be required only by programs needing
protection, thereby freeing maximum main memory for larger

unprotected programs.

C. DATA

Two views of data security prevail: protection against
inadvertent data loss and protection of unauthorized access
to sensitive data. Inadvertent data loss is a problem of
valuable, but not necessarily sensitive, data (Mensching and
Adams, 1991). Procedures for precluding inadvertent data
loss have been common knowledge since the personal
computer’s inception and will not be addressed here. Since
the operating system as described previously provides no
built-in file protection measures, data file encryption must
be used to secure data in personal computers.

Utilities are commonly used to encrypt and decrypt data
files to ensure protection of sensitive data. Some hardware
add-on boards also possess the capability to automatically

encrypt and decrypt data files. There are many different

13

algorithms to encrypt and decrypt data. Some of which are
considered to be safer than others. The Data Encryption
Standard (DES) is the most common one, initially developed

for the U.S. government for use by the general public.

D. PERSONNEL

Sensitivity to security issues and an attitude of
responsibility on the part of all users in a personal
computer environment are necessary for other measures to
succeed in providing security. Whereas mainframes and other
large systems have separate locked rooms and expert
operators shielding them, personal computers are vulnerably
distributed throughout an organization. For instance, no
security system can succeed if a user leaves the area while
a sensitive application is running. No matter how strong
the security system, it is useless unless personnel have a
healthy attitude toward security and are sensitive £o

possible threats (Pfleeger, 1989).

14

vt

III. THE RELAY RACE APPROACH

A. INTRODUCTION

In view of the personal computer operating system’s
inability to provide security and the limitations associated
with security modules and utilities, it becomes worthwhile
to explore new techniques for securing individual
application programs. Three major threats to the security
of an application can be countered, to include unauthorized
execution of the main program, data disclosure and
unauthorized execution of parts of the program by executing
subprograms directly. Traditional methods cover encryption
of data files and securing main programs, while the Relay
Race Approach extends protection to the subprogram level.

1. Application Access Control

Personal computers are often used by different

individuals running different application programs (Gogan,
1991). 1In most cases, all applications are stored on the
same hard disk drive. Allowing access to certain programs
by certain individuals while limiting access to valid users
of other protected programs stored on the same disk is no
trivial task in the PC environment. Since the MS-DOS
operating system provides no security kernel, the solutions
must be coded into the application programs. Each

application program must check for access authorization and

15

take required measures to secure itself against intrusion.
Ti:is is usually accomplished by an application-oriented
Password checking scheme which protects the application at
the main menu level.
2. Data File Security

Intrusion is usually for the purpose of achieving
access to the system data. One intrusion technique is to
bypass the application programs entirely and attempt to gain
access to the system data files directly. An intruder could
simply browse the file or copy it for later examination at
another computer. To overcome this problem, data files must
be encrypted.

3. Intra-application Controls

The growth in application software capabilities and
the consequint growth in size has dictated that applications
be designed as a collection of programs. 1In such a scheme,
a main program calls on subprograms to accomplish specific
tasks in support of the system. The main program can be
secured with a password-checking scheme to prevent its
unauthorized execution. However, access to functions and
data can sometimes be achieved by executing subprograms
directly without the main program, as depicted in Figure
3.1. To preclude this type of intrusion some method of
ensuring that all subprograms are called by their proper
calling programs or subprograms must be devised. The

16

assword Protection Sphere

Main.exe

Call Subprograms

//
//
__D". £
[SubprogramX.exe
Intruder]

o~ , Data Encryption Protection Sphere
Decrynt [ty Files op P

- ~

Do Worn' Caleulate, Sort,
Display Pruint, Lic.

' Data Files

; Re-encrypt Data, sunitize
| S

L e, =

Figure 3.1: Pason ord and Encryption
Sphe vs of Protection

17

-

e

approach explored in this research will be called the relay

race approach.

B. IMPLEMENTATION CONCEPTS

In order to counter the three threats three methods of
protection are implemented in The Relay Race Approach. The
first two measures are commonly used in the personal
computer environment in an attempt to secure applications.
One is basic password checking upon execution ensures user
authorization, and the second employs automatic data
encryption, decryption and deletion preclude theft of raw
data files., However, to preclude program execution via an
unprotected subprogram, all subprograms will check for a
parameter which can only be valid if the subprogram was
called via the main program as illustrated in Figure 3.2,
This is a unique measure applied to individual application
programs and it is from this third measure that the approach
receives its name. In much the same way relay racers must
pass a baton or be disqualified, subprograms must receive a
certain parameter and pass it to subsequent subprograms or
the program execution will ke halted by the security system.

1. Password Storage and Management

There are two methods of storing valid passwords to

be used by the system to authenticate users: including valid

passwords in program source code and storing valid passwoxrds

18

2 Password Protection
Sphere ... extended
to subprograms 2
by Relay Race Main.exe

Approach

Stop

Make Baton | [T00TT10]]
Valid
|
Call
Subprograms

%2‘}“’2/

f ubprogramX.exe

Deerypt

(Do worki \

Sanitize

ats Encryplion Protection Sphere

Data Files

Figure 3.2: Password and Encryption
Spherces of Protection extended to
subprograms using the Relay Race

Approach.

19

— o
5 T~ 2 o
e P SN

R i)

in encrypted data files. Including passwords in source code
provides simplicity and security but requires recompilation
for each password change. Using encrypted data files
containing valid passwords precludes requirement for source
code dissemination to user/ administrator but requires
thoughtful implementation to ensure security. An intruder
could encrypt his/her own password file with a different key
and replace the real password file with his/her version
(same filename). 1In order to defeat this intrusion scheme
the system must check to determine whether the password file
is real or one planted by an intruder. The valid password
file will contain a password to be checked against one in
the compiled code. The intruder’s file would not work if it
did not contain this file checking password. A combination
of both encrypted data file and compiled password ensures
security and precludes source code dissemination and
recompilaticn for routine password changes.
2. Baton and Baton Passing

In order to ensure that subprograms are executed
only when called by proper calling programs a global
variable, or parameter, can be set upon password
authentication and passed from the main program to the
called subprograms. Subprograms can, in turn, pass the same
parameter to any subprograms they call. Each subprogram can
begin execution by checking this parameter before executing

20

further and halt processing if the parameter is invalid.
This is analogous to a relay race at a track meet. Without
the baton being properly passed and received the relay team
cannot complete the race.
3. Data File Encryption

Two types of encrypted data files are required for
the relay race baton scheme: password file and data storage
files. The password file is decrypted, and the decrypted
file is then read and deleted. The decryption process
leaves the encrypted file intact so that when the system
deletes the decrypted files, the original encrypted password
file remains for use in future access attempts. Data
storage files must be decrypted for reading and recrypted if
new data is added or other changes are made. Once again all
files decrypted during a process need to have the decrypted
copy deleted as soon as possible after they are re-

encrypted.

21

P

T

.
5
7
I
i

= PEre T et

IV. APPLICATION IN A THIRD GENERATION LANGUAGE ENVIRONMENT

A. ENVIRONMENT DESCRIPTION

A simple test application was developed in compiled MS-~
BASIC. BASIC was chosen as the third generation language
for a prototype due to its relatively low power and
programmers’ wide exposure to it. If the relay race scheme
can be implemented in BASIC, it is reasonable to assume that
it is possible to implement it in any of the known third

generation languages.

B, APPLICATION DESCRIPTION

The prototype application is a simple, menu-driven,
maritime minefield planning program designed to minimize the
necessity for accurate small scale plotting on geographic
charts. The program has options to input planning data,
calculate mine drop instructions, save instructions to disk,
and print instructions. The application programs and data
are protected using The Relay Race Approach.

The MS-DOS directory presentation for the application is
provided in Figure 4.1. BASRUN20.EXE is a runtime package
required for applications compiled separately such as the
minefield planning application. MFPLAN.EXE is the main
program containing password checking code and opening menu.

The remaining .EXE files are subprograms which accomplish

22

Rt pa e

the application’s tasks. $ED.MNQ and $ED.NMQ are encrypted

data and password files respectively.

$ED MNQ 560 5-19-91 9:24p
$ED NMQ 128 2-10-91 6:57p
BASRUN20 EXE 63046 6-25-85 4:42p
MFPLAN EXE 3415 5-19-91 7:55p
MINECALC EXE 4615 5-19-91 7:56p
MINEPRNT EXE 2503 5-19-91 7:57p
MINESAVE EXE 2887 5-19-91 7:56p
MLRETREV EXE 2279 5-19-91 7:57p

Figure 4.1: MS-DOS Directory presentation of
the application

The threat of intrusion via subprogram defeating the
password authorization and data encryption without baton
passing is illustrated in a structure chart of an intrusion
attempt (Figure 4.2). When unprotected, an intruder needs
only to write a small BASIC program to call MLRETREV.EXE and
MINEPRNT.EXE in order to gain access to the system’s
sensitive data. By combining password checking, data
encryption and the Relay Race Approach, this intrusion is

thwarted (Figure 4.3).

C. TRANSFORMING CONCEPTS TO CODE
1. Handling Passwords and the Baton
The first operation the scheme must accomplish is
password checking. This operation is be accomplished as

early as possible in the application. Figure 4.4 contains

23

Intruder.exe

Call Miretrev.exe
o then call Minepm

f.exe

Q\u

Mlretrev.exe

Retrieves data
from filc

how an intrudet’s prograi

access,

G

Minepmt.exe

Prints results

Figure 4.2: Structure chart illustrating

n could call

subprograms and achieve data

O A

———— -
oy e e

Miplan.exe

Password check

and Menu / control 6"\
Program

Password file
SED.NMQ

outputs

Minecalc.exe| [Minepmt.exel [Mlretrev.exe| [Minesave.exe
Takes user inputs Prints results Retrieves data Appends output to
and calculates from file data file

Figure 4.3: Structure chart of Mine -
field Planning Program

25

ML S R A SR (S
YT

the required BASIC source code to handle passwords and
password checking and initialize the security baton. Line 9
allows the program to be recalled from subprograms without
requesting a password each time the main menu appears.

Lines 40, 50 and 60 blank the display screen for password
entry, input password and return normal function to the
display screen. Line 70 creates a decrypted copy of the
valid password file and names it "PWORD.DAT". During the
execution of the "RCRYPT" program, the user will be prompted
to enter an encryptation key twice. Line 80 opens the
PWORD.DAT file for input. Lines 90, 100, 110 initialize
several variables to be used: N, a loop counter; FOUNDS$, a
flag indicating wether a password is found to be valid or
not; and BATONS$, the global variable or parameter passed to
subprograms to verify that access authorization has been
checked prior to subprogram execition. If the password file
is found to be empty, line 120 will call the violation
routine, (lines 220-290). Lines 140 and 150 input and check
the first entry in the password file and ensure it is
"scud". This defeats intruders who might plant their own
encrypted password file in place of the original. 1If an
imposter password file is detected the wiolation routine is
run. Lines 160-200 are the password checking loop where the
input password (PASSWORD$) is checked against each valid
password in the file (VALIDPWORDS$(N)). If end of file (EOF)

26

is reached without a match the violation routine is run. If
a match is found, lines 300-320 are run in order to close
the password file, delete it and set the security baton
(BATON$) valid. This allows subprograms to be called and
run. The violation routine (lines 220-290) also closes and
deletes the password file. Lines 240-260 provide a pause
situation allowing displayed text message to be read by
users before continuing program execution. Lines 350 to 450
represent location of functioning non-security related

application code.

27

9 IF BATONS$ = "VALID" then GOTO 330

10 LOCATE 13,10

20 PRINT "Enter your password and press ENTER."
30 LOCATE 15,15

40 COILOR 0

50 INPUT PASSWORDS

60 COLOR 7

70 SHELL "RECRYPT $ED.NMQ PWORD.DAT"

80 OPEN "PWORD.DAT" for INPUT as #1

90 N = 0

100 FOUNDS = "F"

110 BATONS$ = "INVALID"

120 IF EOF (1) GOTO 220

140 INPUT# 1, FILECHKS

150 IF FILECHKS$ = "scud” then GOTO 160 else GOTO 220
160 IF EOF (1) GOTO 220

170 N= N + 1

180 INPUT#1, VALIDPWORDS (N)

190 IF PASSWORD$ = VALIDPWORDS (N) THEN FOUNDS$ = "T"
200 IF FOUNDS$S = "T" then GOTO 300 else GOTO 160
210 LOCATE 17,10

220 PRINT "Security Violation!"

230 LOCATE 19,10

240 PRINT "Press any key to continue."

250 A$ = INKEY$

260 IF A$ = "" then 250

270 CLOSE 1

280 KILL "PWORD.DAT"

290 GOTO 500

300 CLOSE 1

310 KILL "PWORD.DAT"

320 BATONS = "VALID"

330 (MINEFIELD

400 PROGRAM
450 BODY)
500 END

Figure 4.4: Code required to check user’s password
and set "baton" variable

28

2. Called Subprogram Requirements

Subprograms require very little additional code to
accomplish the relay race scheme. As the baton is passed by
the COMMON mechanism (sharing variables and values among
programs), a simple check of the security baton (BATONS)
must be made before each program execution. If the value
passed by this variable is valid, execucion continues. If
the value passed by this variable is found to be invalid, it
means that the subprogram was called without valid password
authentication. A violation routine is run and the program
is aborted. Required source code for subprograms is

presented in Figyure 4.5.

3 OPTION BASE 1
4 DIM YTD(10),TTD(10)

5 COMMON BATONS$,NAS,LAHS, IPLAD, IPLAM, IPLAS, LOHS,
IPLOD, IPLOM, IPLOS, SPD, TRK,N,YTD () , TTD()
20 IF BATONS = "VALID" GOTO 30 ELSE GOTO 60

30 (PROGRAM

40 - === ==

50 BODY)

60 LOCATE 17,10

70 PRINT "Security Violation!"

80 LOCATE 19,10

90 PRINT "Press any key to continue."
100 A$ = INKEYS

110 IF A$ = "" then 110

120 END

Figure 4.5: Code required in subprograms

29

%

- *,,,4‘;; ?%1; ol Zianr
P {2y

3. Data Encryption, Decryption and Access Requirements
a. Data Encryption Utility
The encryption program used in this prototype
is RCRYPT.COM, an MS-DOS utility. Many different data
encryption utilities are available and most will work within
this scheme. The application may need to be modified
slightly depending on whether the encryption utility
requires the key to be entered on the command line as a
parameter or prompts the user for the key during execution.
The RCRYPT.COM utility in the prototype prompts for the key
during execution.
b. Data File Manipulation
This prototype ures one password file and one

data file. A flat file of records is used because data for
this application is small and response time is not a
critical issue. AS shown in Figure 4.6 most of the data
manipulations focus on decrypting and reading data. One
subprogram (MINESAVE) allows for appending data to the data
file. This case requires decrypting the data file,
appending new data to the file and re—encrypting the file.
The source code required for this operation is presented in

Figure 4.7,

30

MFPLAN (main program)
- decrypts password file
~ reads password file
~ deletes password file

l

- decrypts data
- reads data
~ deletes file

MINECALC MINEPRNT
- no data file - no data file
operations operations
I |
MLRETREV MINESAVE

- decrypts data
- appends data
- encrypts data

- deletes file

Figure 4.6: Description of data file manipulations
for each of the programs in the Basic
prototype application.

—

40 PRINT "What name would you like to call the data?"

50 INPUT NAS

60 SHELL "RCRYPT $ED.MNQ MINE.DAT"

70 OPEN "MINE.DAT" for APPEND as #2

80 WRITE #2,NA$,LAHS, IPLAD, IPLAM, IPLAS, LOHS, IPLOD,
IPLOM, IPLOS, SPD, TRK, N

90 FOR B =1 to N

100 WRITE #2,YTD(B),TTD(B)

110 NEXT B

120 CLOSE #2

130 SHELL "RCRYPT MINE.DAT S$ED,MNQ"

140 KILL "MINE.DAT"

Figure 4.7: Code required for data file manipulation
in MINESAVE subprogram

31

N AN
c T

c. System Administration

The application requires a system administrator
to accomplish certain tasks. These tasks include steps to
start the system, accomplishing data file housekeeping and
changing passwords. Since it is not desirable to supply -
source code to all users, the application deliverables
should include information indicating what the first entry
in the password file needs to be. This entry should be
unique or nearly unique among different copies of the
application to preclude one systems administrator from
intruding into another’s copy. For example, line 150 Figure
4.4 character string "scud" (FILECHKS$) should be identified
as the required first entry in the password file and should
be different for each copy of the application. To start the
system the administrator should add his/her desired
passwords, nine at most, to the required first entry,
encrypt the file with the desired case sensitive key and the
name "$ED.NMQ" and delete the un-encrypted copy of the
password file,

The application should also include a data file
with one set of test data included to preclude the system
from attempting to decrypt and append to an empty file. A
copy of this original data file should be maintained by the
administrator and used for data housekeeping operations.

The data file, like the password file, needs to be encrypted

32

and named in accordance with lines 130 and 70 of Figures 4.7
and 4.4 respectively.

Changing the passwords should be done regularly
in any system and should be easy to accomplish so as not to
discourage changes when needed. To change passwords, run
RCRYPT.COM directly on the $ED.NMQ file and edit the file
with new passwords. The required first entry of the file
should not be changed or the system will reject the new
password file as bogus. Re-encryption of the password file
using a new encryption key is needed. Changing the key each

time passwords are changed maximizes security.

33

g €

B T T o

V. APPLICATION IN A FOURTH GENERATION LANGUAGE ENVIRONMENT

A. ENVIRONMENT DESCRIPTION

The Relay Race Approach was installed into a previously
implemented DBaselIV database application. DBase was chosen
because of its widespread familiarity and its non-procedural
nature, If the approach could be easily grafted into an
existing DBase IV generated application, it would be an
effective approach for securing other existing applications.

Fourth generation languages are often used in
environments where end users build applications. Security
may not be considered when users create applications. The
Relay Race Approach shows promise as an efficient security
measure for these existing end user applications.

The DbaselV application generator allows users or
developers to create fully functional menu driven database
applications with little or no coding. Database structures,
forms, reports and queries are created using user friendly
graphical interfaces and then are combined to work together
by the application generator. The application generator
generates source code with comments which is compiled into
object code that can be run either in the DBase IV

environment or with a run—-time module.

34

B. APPLICATION DESCRIPTION

The application is the user version of an automated dive
log. It is used for users to enter SCUBA diving events, and
query reports such as logs or qualification reports from the
database. There is another version which accesses the same
database which is used by the system administrator for
marketing and other business and organizational functions.

The application accesses four database files: DIVER.DBF,
SITE.DBF, DIVE.DBF and QUAL.DBF. It uses one data entry
form file, DIVEFORM,SCR. Two query (.QBE) files were
slightly modified for use: JOIN1.PRG and QUALLIST.PRG. Two
report files were built and used: LOG_REPO.FRM and
QUALRPT.FRM. Finally, the application generator created two
program files: DLUSER.PRG and USERBAR.PRG.

Since the Relay Race Approach depends on passing
parameters between programs, the structure of the
application must be understood before the approach can be
installed into an existing application. Since the source
code was 95 percent generated by DbaselV the application
must be reverse engineered, yielding a structure chart
needed for understanding. Figure 5.1 is the structure chart
for the application. Only JOIN1.PRG and QUALLIST.PRG can
access the data, so only procedures which can possibly call

them need to have the additional scurce code installed.

35

108

Quallist

. [Sci02) [Sei03) [Set04]

m |

|

ma—c& .

» % o :

Form file .prg liles Report files

13

1 3

t [Dbi02] [Dbfo3] [Dbfod] [Dbios] :

B o eam i m i omes M so U s amcrm i m e o

Log

Figure 5.1: Structure Chart of Dive

Application

36

These are DLUSER and MPDEF in DLUSER.PRG file, ACT03, ACT04

in USERBAR.PRG file, and JOIN1.PRG and QUALLIST.PRG files.

C. TRANSFORMING CONCEPTS TO CODE
1. Handling Passwords and the Baton

Checking password validity is accomplished first and
the code required for this was inserted into the main
program, DLUSER.PRG. Figure 5.2 shows the additional source
code inserted at the very beginning of the DLUSER.PRG file.
The set color commands ensure that the password is not
echoed to the screen when the user types their’s. 1In order
to get the prompt "Enter Password" on the screen and not the
password itself, the prompt and the acceptance of the value
for variable "PWORD" had to be separated by the set color
command. This is why the ACCEPT string is a space. Set
color is used again to return the screen to normal. Since
most Dbase IV users will have the capability to compile
programs, the passwords were compiled rather than stor~ in
an encrypted file. The logic in the IF / ELSE clause is
such that if no password is entered, and the error message
which occurs is "ignored" by the user, the program
VIOLATIO.PRG will be run, not the rest of DLUSER.PRG. Dbase
defaults to the first statement when an error is encountered
in an IF/ELSE clause and the user selects "IGNORE" at the

error prompt. VIOLATIO.PRG displays a violation message and

37

terminates the program. If the password is found to be
valid the data files are decrypted. Since the baton in
DBase can be a true parameter instead of a shared variable
as was the case in BASIC, a variable does not need to be
set. When a procedure is called it simply needs to be
called with a value which will be checked by the called
procedure. Figure 5.3 illustrates the correct syntax for

calling programs and procedures with the parameter required.

@3,3 SAY "Enter Password: "
SET COLOR OF NORMAL TO B/B
ACCEPT " " TO PWORD
SET COLOR OF NORMAL TO W+/B
IF (.NOT. PWORD="TIGRIS") .AND. (.NOT. PWORD="SCUD")
LAND. (.NOT.PWORD="BAGDAD")
DO VIOLATIO
ELSE
RUN PKUNZIP ADLDATA -sIRAQ
** Rest of Program *¥*

Figure 5.2: Code required for password checking in
the main program for the Dive Log application.

** Calling Program or Procedure **
DO MPDEF WITH "GOOD"

** Called Program or Procedure **
PARAMETER BATON
ON ERROR CANCEL
IF .NOT. BATON = "GOOD"
DO VIOLATIO
ELSE
** Rest of Program **

Figure 5.3: Code required for calling subprograms
and procedures with parameters.

38

LA LR - e R

2. Called Procedures or Subprograms Requirements

Called subprograms or procedures which receive the
security parameter BATON must contain the PARAMETERS
statement as shown in Figure 5.3. It was discovered during
testing that if an intruder attempted to call a subprogram
or procedure directly without the required parameter, Dbase
displays an error message displaying the (IF .NOT. BATON =
"GOOD") line of source code and a prompt "PARAMETER NOT
FOUND". This would give the intruder information required
to successfully call the subprogram or procedure on his next
attempt. The "ON ERROR CANCEL" line terminates program
execution when any error occurs to remedy the situation.
The IF/ELSE clause checks for the security baton and runs
the violation procedure or the rest of the program
accordingly.

3. Data Encryption, Decryption and Administration.

Since the application uses four different data files
the PKZIP/PKUNZIP utility programs were selected for
encryption and decryption of data files. It allows for
compression and encryption of multiple files into one single
file. As depicted in Figure 5.2 the encryption key "IRAQ"
is compiled into the program instead of being prompted from
and entered by the user.

The procedure ACT05 in the USERBAR.PRG file, (Figure

5.1), is executed to exit the system. Data encryption and

39

e

B

ERey Ty

residue housekeeping is accomplished here. The required

code is shown in Figure 5.4

RUN PKZIP ADLDATA -m -SIRAQ * ,DBF

Figure 5.4: Code required for encrypting data files
and removing the decrypted data files,
The system administrator has only to periodically
recompile the source code changing passwords and encryption
keys. Access to the source code should be limited to
trusted personnel only as it contains information which

would greatly simplify intrusion.

40

VI. THE RELAY RACE APPROACH AND LOCAL AREA NETWORK SECURITY

The explosion of personal computers in the workplace has
led to the need for data communication and asset sharing
among an organization’s Pcs. Local area networks (LANs)
efficiently provide these attributes and are being utilized

extensively today.

A. ELEMENTS AND FUNCTIONALITY OF LANS

., LAN implementation includes installing LAN hardware
expénsion cards in the computers which are to be linked,
linking the computers together using a cabling system, and
installing a LAN operating system on the machines. One of
the machines is designated as the server and the rest are
clients. The full operating system resides on the server
while only a shell or subset resides on each client. 1In
popular PC LANs the network operating system still utilizes
MS-DOS but provides added network functions.

Communication between machines or nodes in a network

involves multiple communication protocols. Each protocol
level uses functions provided at lower levels by lower level

protocols.

B. SECURITY IN LANS
Most LAN operating systems provide security functions

capable of multi-level security of files and physical

41

devices. These measures combined with certain physical
security measures involving the network server can protect
assets against casual intrusion attempts. However, if
physical access to the network server can be gained an
intruder could attempt to load a different copy of the
network operating system onto the server and give himself
access to protected files and/or devices. Many LANs place
printers and other periphrials along side the server and the
server therefore cannot be physically isolated from the

users or public.

C. ENHANCING OVERALL LAN SECURITY

Even though network operating systems oftem provide
security features, the Relay Race Approach can significantly
strengthen overall security. The Relay Race Approach
provides efficient security at the application layer
complementing security features implemented at the LAN
operating system layer. For example, if an intruder were
capable of accessing the LAN server, load a different copy
of the LAN operating system and attempt to access a
protected application, additional security provided by the
Relay Race Approach would significantly hamper his attempts.
The additional layer of security would most likely end the
intruder’s attempt: at least for that session.

Additionally, combining security measures implemented at the

42

LA A

LAN operating system layer with those at the application
layer can reduce requirements for "armor plated" physical
security measures such as heavy duty locks, doors or
cabinets for the network server.

Both prototype applications were installed on a LAN.
Both executed as expected and illustrated feasibility of the
Relay Race Approach as a security measure for applications

running on LANS.

43

VII. CONCLUSIONS

Persosal computer security is an issue of increasing
; importance to computer professionals. It is valuable to
A explore efficient methods of providing or enhancing PC
; security. The Relay Race Approach provides or enhances

security in the PC environment efficiently. The Approach

Fg o e

can be strengthened using deceptive measures to thwart

Ry ey
7

intrusions by all but those thoroughly familiar with the

application source code.

A. THE NEED
The increased need for PC security is evident in view of
several recent trends. First, PCs are being used in an

increasing number of different business areas. These

include those areas where sensitive processing is common.
Secondly, more persons are becoming familiar enough with
PC’s and MS5-DOS to be considered capable of casual intrusion
into marginally protected PC environments. Finally, the
incresase in public sensitivity to privacy of information
issues dictates the need for increased security in areas

once thought to be of a non-sensitive nature.

B. REQUIRED ATTRIBUTES
For these reasons an approach with the following

atcributes would be of significant wvalue. It should be

44

compact, as application program size is of great concern in
the PC environment. The approach should be flexible or
multi-leveled, that is, it should allow public access to
some applications and limit access to other application(s)
to only their specified set of authorized users. The
approach should be easy to implement, even in existing
applications. Increasing end-user application development
makes this a valuable attribute. The Relay Race Approach
exhibits these desired attributes and is strong enough to
withstand casual attacks from intruders with strong

knowledge of MS-DOS and PCs.

C. POSSIBLE ENHANCEMENTS

The relay approach depends on the premise that an
intruder does not have access to the application source code
and knowledge of how the approach was implemented in the
application. There are two modifications which could
enhance security just in case knowledge of the approach
and/or application source code is compromised: unique
application copies and deceptive and dynamic baton
variables. Additionally, disk file residue eliminators
could strengthen security.

l., Unique Application Copies

First, it would be important to make different

copies of the application utilize unique or nearly unique

45

password files. This would be accomplished by compiling
many versions of the program, each using a different first
entry in the password file (the password file check
variable). This would defeat an intruder who might have one
copy of the application and attempt to insert his password
file into another system and using it to gain access to the
other system’s data.
2. Deceptive and Dynamic Batons

To further help deceive intruders who might gain
access to the program source code, the "baton" may be
concealed. Suppose in the Basic application the baton
variable were "MINEDIST#" instead of "BATON" and was of type
integer, Figure 4.4. This would slow a potential intruder’s
conceptualization as he browses the source code in search of
security hints. Additionally, dynamic batons can be
employed. Such a baton variable can be set to valid
indirectly through one or more intermediate variables which
might appear to be accomplishing some arithmetic operations.
The value given to the baton variable may also change often
but retain some characteristic for the validity check. For
instance, the baton could change value but retain even
divisgibility by 17 and the validity check would be designed

to test for that.

46

SRR I

3. Disk File Residue Eliminators
Finally, using a filewipe type residue eliminating
program instead of simple MS-DOS delete command in the
application would provide an extra degree of security to
counter random disk sector searches.
The Relay Race Approach provides efficient, casual
security for personal computer applications in today’s

environment of increasing PC security Threats.

47

IPNCR S

B i U
TR P

Appendix A: Source code for Minefield Planning
Application in BASIC.

1 'MFPLAN.BAS - Prototype 2 4-21-91 of Relay Race Baton PC security system.

3 OPTION BASE 1

4 DIM YTD(10),TTD(10)

5 COMMON
gA‘[l_(%hé%,NA&LAH&IPLAD,IPLAM,IPLAS,LOH$,IPLOD,!PLOM,IPLOS,SPD,TRK,N,YT
7 %w VALIDPW$(10)

8CLS
9 IF BATONS$="VALID" THEN GOTO 140

18 LOCATE 13,10

20 PRINT "Enter gour password and press ENTER.”

21 LOCATE 15,1 :

2' *BLACKEN SCREEN TO HIDE PASSWORD AS IT IS ENTERED &
GET PASSWORD

23 COLOR O

24 INPUT PASSWORDS$

25' ***RESET
SCREEN

26 COLOR 7

27 SHELL "RCRYPT $ED.NMQ PWORD.DAT"* w+DECODE FILE OF VALID
PASSWORDS AND CHECK USER'S FOR VALIDITY

28 OPEN "PWORD.DAT" FOR INPUT AS #1

30 N=0:FOUNDS$="F": BATONS$="INVALID"

32 N=N+1

34 IF EOF(1) GOTO 50

36 INPUT# 1, VALIDPWS(N)

38 IF PASSWORD$=VALIDPWS$(N) THEN FOUNDS="T"

40 IF FOUND$~"T" THEN GOTO 60 ELSE GOTO 32

50 IF FOUNDS="F" THEN CLS:LOCATE 17,10:PRINT "Your password is invalid,
access denied."

51 H+PAUSE TO
READ MESSAGE

52 LOCATE 19,10:PRINT "Press any key to continue.”

54 AS=INKEYS$:IF A$="" THEN 54

56 CLOSE 1:KILL "PWORD.DAT"* #~CLOSE PASSWORD FILE & ERASE IT
58GOTO 240 wHSTOP

60 CLOSE 1:KILL "PWORD.DA".

62 BATON$="VALID"' w+*BUILD BATON

80 CLS :

90 LOCATE 5,5:PRINT "Welcome to Minefield Planning. A simple Basic program to"
100 LOCATE 6,5:PRINT "assist in planning air deployed minefields. Given [P lat”
110 LOCATE 7,5:PRINT "and long, hole lat & long's, track, speed and trajectory”
120 LOCATE 8,5:PRINT "the program will calculate and securely store andjor "

130 LOCATE 9,5:PRINT "print time to drop and distance to drop."

140 LOCATE 11,10:PRINT "MAIN MENU"

150 LOCATE 13.5:PRINT "1 - Enter new data and calculate drops”

155 LOCATE 14,5:PRINT "2 - Retrieve previously stored solution from disk”

48

160 LOCATE 15,5:PRINT "3 - Print data from earlier calculated or retrieved ling"
165 LOCATE 16,5:PRINT "4 - Save current mineline caliculations to disk"
170 LOCATE 17,5:PRINT "5 - EXIT SYSTEM"
180 LOCATE 19,10:PRINT "Enter your choice”
190 INPUT CH$
200 IF CH$="1" THEN CHAIN "MINECALC" ELSE IF CH$="2" THEN CHAIN
"MLRETREV" ELSE IF CH$="3" THEN CHAIN "MINEPRNT" ELSE IF CH$="4" THEN
gHACI;h!J_éM!NESAVE" ELSE IF CH$="5" THEN GOTO 240
10
220 LOCATE 10,10:PRINT "ERROR! choose 1,2, 3,4 OR 5"
230 goto 80
240 CLS:END

1 'MINECALC.BAS
3 OPTION BASE 1
4 DIM YTD(10),TTD(10)
5 COMMON
BATONS,NAS,LAHS,IPLAD,IPLAM,IPLAS,LOHS,IPLOD,IPLOM,IPLOS,SPD, TRKN,YT
D(),TTD()
7 DIM HLAD(10),HLAM(10),HLAS(10),
g!lb(l)h[;ﬁO),HLOM(10),HLOS(10),HLAMX(10),HLA(10)
HLOMX(10),HLO(10),NSDIFF(10), EWDIFF(10),NSYDS(10),EWYDS(10), TOTYDS(10)
9 DIM TOTYDSCHK(10)
10CLS
20 IF BATONS = "VALID" GOTO 30 ELSE GOTO 1065
30 cls:LOCATE 2,5:PRINT "Enter Data Below Prompts."
40 LOCATE 4,5:PRINT "Is I.P, Latitude N or S? (CAPITALS)"INPUT LAH$
50 LOCATE 5,5:PRINT "Degrees":LOCATE 5,15:PRINT "Minutes"
52 LOCATE 5,25:PRINT "Seconds"
60 LOCATE 6,5:INPUT IPLAD:LOCATE 6,15
81 IPLADR=IPLAD"3.141593/180
62 INPUT IPLAM:LOCATE 6,25:INPUT IPLAS
70 LOCATE 8,5:PRINT "is I.P. Longitude E or W? (CAPiTALS)"INPUT LOHS$
?Fg)Llc.)%CATE 9,5:INPUT IPLOD:LOCATE 9,15:INPUT IPLOM:LOCATE 9,25:INPUT
80 LOCATE 11,5
92 PRINT "Enter true track from 1.P. to holes in 3 digits(001-360)."
84 INPUT TRK
95 TRKR=TRK*3.141593/180
100 LOCATE 13,5:PRINT "Enter groundspeed in knots.":INPUT SPD
110 LOCATE 14,5
112 PRINT "Enter weapon trajectory in yards for your speed and altitude (from
TACREFMAN)."
114 INPUT TRAJ
}g%) (L)(SCATE 18,5:PRINT "Enter number of mines in this line.™INPUT N
S
130 IPLAMX = |IPLAM + (IPLAS/60)
131 IPLA = IPLAD + (IPLAMX/60)
132 IPLOMX = {PLOM + (IPLOS/G0)
133 IPLO = IPLOD + (IPLOMX/60)

134 IF (LAH$="N") AND (LOH$="W") GOTO 140 ELSE GOTO 372
140 FORI=1to N

150
160
162
165
170
171
172
173
174
175
250
260
270
280
290
300
310
320
325

LOCATE 2,20:PRINT "Hole ";1i

LOCATE 3,5

gRAN'lI' "Latitude: Deg Min Sec Longitude: Deg Min Sec"
=i+

LOCATE B,15:INPUT HLAD(})

LOCATE B,21:INPUT HLAM(l)

LOCATE B,27:INPUT HLAS())

LOCATE B,44:INPUT HLOD(l)

LOCATE B,50:INPUT HLOM(})

LOCATE B,56:INPUT HLOS(l)

HLAMX(l) = HLAM(!) + (HLAS(1)/60)

HLA() = HLAD(l) + (HLAMX(1)/60)

HLOMX() = HLOM() + (HLOS(i)/60)

HLO(l) = HLOD(!) + (HLOMX(1)/60)

NSDIFF(l) = HLA(!) - IPLA

EWDIFF(l) = IPLO - HLO(l)

NSYDS(1) = NSDIFF(l) * 2020 * 60

EWYDS(I) = EWDIFF(I) * 2020 * 60 * COS(IPLADR)

IF (TRK>BS)AND(TRK<95))OR({TRK>265)AND(TRK<275)) THEN 340

330 TOTYDS(l) = (NSYDS(}))/(COS(TRKR))

335

GOTO 350

340 TOTYDS(1) = (EWYDS(I))/(SIN(TRKRY))
350 YTD(l) = TOTYDS(l) - TRAJ

370

360 TTD(l) - ((((YTD(1)/2020)/SPD)* 60)* 60)

NEXT

371 GOTO 820

372 PRINT "NE, SW AND SE HEMISPHERE PROBLEMS ARE NOT IMPLEMENTED
AT THIS TIME."

374 cls:GOTO 1070

820 CLS

830 LOCATE 2,2:PRINT "IP"

831 LOCATE 2,17:PRINT "Track"

832 LOCATE 2,25:PRINT "Speed"

833 LOCATE 2,33:PRINT "Yards to drop"
834 LOCATE 2,49:PRINT "Time to drop"
840 LOCATE 4,2:PRINT LAH$

841 LOCATE 4,4:PRINT IPLAD

842 LOCATE 4,7:PRINT IPLAM

843 LOCATE 4,10:PRINT IPLAS

844 LOCATE 4,17:PRINT TRK

845 LOCATE 4,25:PRINT SPD

846 locate 5,2;print LOH$

847 locate 5,4:print IPLOD

848 locate 5,8:print IPLOM

849 locate 5,11:print IPLOS

850
860
870
872
880

FORK=1toN

L=3+K

LOCATE L,33:PRINT YTD(K)
LOCATE L,49:PRINT TTD(K)
NEXT K

890 LOCATE 18,10:PRINT "Press any key to continue.”

900 B$=INKEY$:IF B$=""THEN 900

910 CHAIN "MFPLAN"

1065 cls:locate 10,10:print "Security Violation, Access Denied.”
1066 locate 11,10:print "press any key to continue.”

1067 z$=inkey$:if z$=""then 1067

1070 cls:END

1 'MINEPRNT.BAS - print module for minefield planning program.

3 OPTION BASE 1

4 DIM YTD(10),TTD(10)

5 COMMON

BATONS$ NAS,LAHS$ IPLAD,IPLAM,IPLAS,LOHS$,IPLOD,IPLOM,IPLOS,SPD,TRK,N,YT

DO, TTD()

20CLS

30 iIF BATON$="VALID" GOTO 40 ELSE GOTO 250

40 LPRINT " "LPRINT " "

45 LPRINT ,,"UNCLASSIFIED":LPRINT " "

50 LPRINT " Minetield Planning Repont”

60 LPRINT ,,"for " NA$

65 LPRINT " "

70 LPRINT "initial Position:"

|8r9 LPRINT LAHS " " IPLAD "-" IPLAM "-" IPLAS " " LOH$ "" IPLOD "-" IPLOM "-"
LOS

90 LPRINT " "

100 LPRINT "True Track: " TRK " " "Awcraft Groundspeed: " SPD

110 LPRINT " "

115 LPRINT "Hole #","Time to Drop "."Distance to Drop:"

117 LPRINT “(seconds)","(yards)"

120 FORK=1TON

130 LPRINT K, TTD(K),YTD(K)

140 NEXT

142 LPRINT " "

145 LPRINT . ,"UNCLASSIFIED"

150 CHAIN "MFPLAN"

250 CLS:LOCATE 10,10:PRINT "Secunty Violation, Access Denied."

260 LOCATE 11,10:PRINT "press any key to continue”

270 g%=inkey$:if q$="" then 270

280 cis:end

1 'MINESAVE.BAS

3 OPTION BASE 1

4 DIM YTD(10),TTD(10)

5 COMMON
l%,(‘SCEC_DI_I[\J);?\,NAS;,LAHS,iPL/!\D,IPLAM,IPLAS.,LOH$,IPLOD,IPLOM,!PLOS,SPD,TFM,N,YT
3(1) EEA"TON%"VALID" THEN GOTO 40 ELSE GOTO 140

22 LOCATE 2 2.PRINT "When this program stores a file it does not store the”

23 locate 3,2.print "rajectory or the hole lat/long. Therefore no classified”

51

24 locate 4,2:print "data is stored or can be derived from the file as long as”

25 locate 5,2:print "the minefield is an exercise field and not a real operational one."
26 LOCATE 7,5:PRINT "Do you wish to store this data in the file? (y or n) "

27 INPUT AN$

é%ljr: é\&s-'Y" OR AN§="y" GOTO 40 ELSE IF AN$="N" OR AN$="n" GOTO 130 ELSE
31 LOCATE 10,5:PRINT "Error choose y or n."

32 LOCATE 12,5:PRINT "Press any key to continue.”

33 B$=INKEY$:IF B$="" THEN 33

34 GOTO 21

40 LOCATE 5,5:PRINT "What name would you like to store the data under?"

45 locate 6,8:print "(all lower case and remember it please)”

50 INPUT NAS%

60 SHELL "RCRYPT $ED.MNQ MINE.DAT"

70 OPEN "MINE.DAT" FOR APPEND AS #2

80 WRITE #2,NAS LAHS,IPLAD,IPLAM,IPLAS,LOHS,IPLOD,IPLOM,IPLOS,SPD,TRK,N
81 FOR B=1 TON

82 WRITE #2,YTD(B),TTD(B)

83 NEXTB

90 CLOSE #2

100 SHELL "BCRYPT MINE.DAT $ED.MNQ"

110 KILL "MINE.DAT"

130 CHAIN "MFPLAN"

140 CLS:LOCATE 10,10:PRINT "Security Violation, access denied."

150 LOCATE 11,10:PRINT "Press any key to continue.”

160 p$=inkey$:if p$="" then 160

170 CLS:END

1 'MLRETREV.BAS

3 OPTION BASE 1

4 DIMYTD(10},TTD(10)

5 COMMON

BATONS,NAS,LAHS,IPLAD,IPLAM,IPLAS,LOHS IPLOD,IPLOM,IPLOS,SPD,TRK,N,YT
DO, TTD()

20CLS

30 IF BATONS="VALID" THEN GOTO 40 ELSE GOTO 160

40 LO())ATE 5,5:PRINT "Enter the name you stored desired data under. (lower case
please)"

50 INPUT NM$

60 SHELL "RCRYPT $ED.MNQ MINE.DAT"

70 OPEN "MINE.DAT" FOR INPUT AS #3

80 IF EOF(3) THEN CLOSE #3:PRINT " NOT FOUND"KILL "MINE.DAT"GOTO 150
90 INPUT #3 NAS

110 IF NAS=NMS THEN GOTO 120 ELSE GOTO 80

120 INPUT #3,LAHS,IPLAD,IPLAM,IPLAS,LOH$,IPLOD,IPLOM,IPLOS,SPD,TRK\N
121 FORC=1 TON

122 INPUT #3,YTD(C),TTD(C)

123 NEXT C

130 CLOSE #3:KiLL "MINE.DAT"

150 CHAIN "MFPLAN"

160 CLS:LOCATE 10,10 PRINT "Security Violation, access denied.”

52

170 LOCATE 11,10:PRINT "Press any key to continue."
180 s$=inkey$:if s$="" then 180
190 cls:end

53

Appendix B:

Source code for Dive Log Application in Dbase IV

hkkkkkhhdhdhhhihkhkhhdhhhkhhhhhhhdkhhhhkdhdhkhkhhkhhkdhhhhkhhdhhhkhhkbhhkhkhdhhhhkht

* Author.......: This is an APPLICATION OBJECT.
* Date......... : 8-04-91
* Notice.......: Type information here or greetings to your users.

* Description..: user application of dive log database.

* Description..: Main routine for menu system
Fedke e ok sk o e e ok de ok e dle e sl o e ke e ok sk ke e ol e e ok e oot ook ok ol ok ke e e e ol o o o e ke e e ke e sk e e e o o ok ke e e e e e o e e b ek oke ok

* ADDED CODE FOR SECURITY MODULE
@3,3 SAY "Enter Password: "
SET COLOR OF NORMAL TO B/B
ACCEPT " " TOPWORD
SET COLOR OF NORMAL TO W+/B
IF (NOT. PWORD="TIGRI1S").AND.(.NOT. PWORD="SCUD").AND.(.NOT.
PWORD="BAGDAD")
DO VIOLATIO
ELSE
RUN pkunzip adldata -sSIRAQ

e P R Ak e ke e ok ok ok S e o

*.. Sctup environment
SET CONSOLE OFF
IF TYPE("gn_ApGen”y="U"
CLEAR WINDOWS
CLEAR ALL
CLOSE ALL
CLOSE PROCEDURE
gn_ApGen=1
ELSE
gn_ApGen=gn_ApGen+l
IF gn_ApGen > 4
Do Pause WITH “"Maximum level of Application nesting exceeded.”
RETURN
ENDIF
PRIVATE gn_oldsize
gn_oldsize=gn_scrsize
PRIVATE gc_bell, gc_carry, ge_clock, ge_century, gc_confirm, ge_deli,;
ge_safety, ge_status, ge_score, ge_talk, ge_key, gc_prognum,;
ge_quit, ge_color, ge_display, gl_color, gl_batch, gn_scrsize

¥_- Store sume sets to variables

ge_bell =SET("BELL")
54

ge_carry =SET{"CRRRV™)
gc_clock =SET("CLpC¥*;
ge_color =SET{®ATTRISNTE®:
: “ gc_century=SET{"CENTURY®)
f ge_contira=SET{ CONFIRN)
: gz _turser =SET("CUR3DR")
E . gc_deli =BET{"DELIMITERS"!
gc_display=SET{"DISPLAY®)
t gc_safety =5ET{’SAFETY")
gc_status =SET{"STATUS")
ge_score =5ET{"SCOREROAKD*)
gc_talk =SET{"TALK*)
3 SET CONSDLE ON
’ IF go_dispiay ¢ “EBA2SY
gn_errors(
ON ERRSR 77
SET DISPLAY 70 EBRIS
ON ERKCR
ENDIF

SET BELL ON
SEY CARRY OFF
SET CENTURY OFF
SET CLOCK OFF
SET CONFIRN OFF
SET DELIMITERS 10 **
SET DELINITERS CFF
SET DEVICE 7O SCRIEN
SET ESCAPE ON

" BET EXCLUSIVE OFF
SET LOCY ON
SET MESSPGE TC **
SET PRINT OFF
SET KEPROCESS 15 &
SET SAFETY o)
SET TALK OFF

§-- Inmitialize glotal variables

gl_batch=.F, b 15 3 batch oreration in pregress
gl_coler= ISCOLOR() JAKD, SEV{"JISF_LAY') < "CEAMOND*
gnh_error=0 Lt O 1f ro error, stherwise an error oocurred
gr _ikey=¢C & yeyoress returned fros the INGEY() funziion
gn_scrsize=d| &) nusher of lires on streen
gn_send=(& return value frca popup of position senus
gn_traces! b sets trace level, however you need to change tezplate
gc_brdr="{" & border to use when drawing bores
. gc_dev="CON' & Device to use for prirting - See Proc, Printlet
ge_key="N' & leave the application
gc_prognue=" ° &t internal progran counter to hardle nested renus
. gc_quits" &L meavar for return tc caller

Tistval="NC_FIELD" &% Pick List value

5

$-- rescve asterask to turs cloch on
$ SET CLOCK 70

$-- Blank the screern
SEY COLOR TO

CLEAR

SET SCOREBOARD OFF
SET STATUS OFF

$-- Define menus
1RRsRLRLRIRLLBLLLS
DD MPDEF WITH "60OD" &b execute Menu Process DESimitien
31180808038 80800 81
$-- Execute pain meny
D0 WHILE gc_key = N’
1133808808k RRR R4}
D0 USERBAR WITH *BCO®,*53CD
SEERLRRLSLRIRAINLILY
IF gr_quit = '@
EX3T
ENDIF
ACTIVATE WINDOW Exit fiop
le_cont=SET{*CONFIRN')
lc_dela=BET{ DELIMITER®)
SET CONFIRM CFF
SE™ DELIMITER LFF
€ 1,2 CAY *Do yuu want to leave this applizatics?'
BET go_vey PICT "t* VALID go_tev ¢ "NY*
RERD
SET CONFIRM &lc_conf,
SET DELINITER &1z del:,
RELERSE 1c_ront, 1c_gel:
DEACTIVATE WINDCW Exit App
ENDDD

1-- Resat envirgnaent
DEACTIVATE WINDDW FullS:c
27 Color{gc _tolor)
gn_hpben=gn_frBen-!

SEY BELL dgc_bell.

SET CARRY 4gc_carry.

SEY CLOCK kge_clock,

SET CENTURY &3z _century,
SET CONFIRNM &gz_confirs,
SET CURSOR &gc_cursor,
SET DELIMITERS &gc_dela,
SET DISPLAY T0 &gc_display.
SET STATUS kgc_status,
SET SAFETY tgc_safety,
SET SCORE &gc_score,
SET TALY &gc_talk,

IF gn_fipgen ¢ §
Ok YEY LAEEL F!
CLEAR WINICWS
CLEAR ALL
CLOSE ALL
CLOSE PROCEDURE
SET ESCAFE O
BET MESSABE 0 **
CLEAR
ELSE
DEFINE WINDOW FullScr FROM 0.0 70 gn_oldsize<3,79 KME
DEFINE WINDOW Savescr FROM .0 TS gn_oldsize 79 MOKE
DEFINE WINDOW Helpszr FRCM 0,0 70 gn_cldsize,79 NOSE
ACTIVATE WINDOW FullS:cr
ENDIF
RRsReRiReseeRtits]
ENDIF
1jReRRtEeasiisass)l

RETURK

R R R R R R R R R iRas et Rasiisiiashisitatiitsitseitsiisises]
"
§ Description,.t Procedere files for generated seny systes,
§ The prograee that follow are comeas to sai- routines
¥ The last prozedore is the Meru Process DEF:rition
R R R R SRRt R a R RNt R RR AR b iR Rassssnsseitissetisitei
"
PROCEDURE Lochat
FARANETER 1type
TF NETWIRK!)
gn_errorsy
ON ERRCR D0 Multerr

IF ltype = "2°
11 _1ock=RLOCKY)
ENDIF
ON ERROR
ENDIF
RETURN

PROCEDURE I~fo_Eox
PARANETERS 1c_say

? 1o _say

° REPLICATE(*-* ,LEN{lc_say))
2

RETURN

¥ EOP: Infc_Box

3

PROCEDURE get_sele
§-- Get the user selection & sto-e EAR irdc variabis

gn_send = BAK(} &% Varizhle for print t=sting
DEACTIVATE POPUP
RETURN

PROCEDURE ShowPick
listval=PROMPT()
IF LEFT{entryfig.1)="F"
le_file=POPYP()
DG &lc_file, WiTH 'A°
RETURN
ENDIF
IF TYPE{*1c_window"}="li*
ACTIVATE WINDOK ShoxPick
ELSE
ACTIVRTE WINDOW klc_window,
ENCIF
STORE 0 70 In_ikey,x!,x2
In_ikey=LASTAEY!)
IF In_1key={3
tI=ATTRIM Lastval)+',* le_Hld)st)
IFxt =0
le_tigist=1r_f14)st+TRIM{1istval)+’ -
ELSE
x2=BT("," SUBSTR{}_fldlst,xi))
le_t1gist=STUFF lc_¢ldist,nl, 22, ")
ENDIF
CLEAR
2 1e_fldlst
ENCIF
ACTIVATE SCREEN
RETJURN
$ ECP: ShowPich

PROCEDURE Cleanus
¥-- tost whetner repert opticn was selzcted
D0 CASE
CASE gc_dev="CON’
? " Press any key to coctinue..."
xx=INKEY(C)
CASE gc_dev="PRN’
SET PRINT CFF
SET PRINTER 10
CASE gc_dev="TXT"
CLOSE ALTERNATE
ENDCASE
gc_dev="CON’
RETURN

$ EOP; Cleanup

PRECEDURE Pause
PARAMETER 1c_asg
1-- Paraseters @ It
IF TYPE{"]c_pessage”)
gr_error=ERRCRY{)
ENDIF
lc_gsg = 1o _msg
lc_optaon=¢’
ACTIVATE WIKDOW Pause
IF gn_error > 0
IF TYPE{"1lc_pessage"}="y"

€ (,1 S4Y [An error has occumred 'Y - E-ror eessage: J4MESSRSE()
ELSE
€ 0,1 SAY [Error ¥)+ic_pescags
ENDIF
ENDIF

€ 1,1 SAY lc_nsy

WAIT * Press any kev to continue,..'
DEACTIVATE WINDOK Pause

RETURN

$ EOP: Pause

PROCEDURE Mujter
§-- set the gxobaA error variahle
gn_error=ERRCR()
$-- contains error nueber to test
le_erno=STRIERADR{) 3},
$-- opticn var.
" le_opt="T'
$-- Dialog box for optiors Try again anc Keturn io eenu,
IF c_ernc ¢ *L08,109,128,12%,"
ACTIVATE WINDOK FPause
£ 0,2 SRV Jc_ernge® M4MESSA SE(;
§ 2,22 SAY "T = Try again, F =
PICTURE *1* VALID lc_opt § ""
READ
DEACTIVATE WINDTW Payee
IF lc_port = *R”
RETURN
ENDIF
ENDIF
$-- Display gessage and returr to menu.
IF NOT, ic_erso § "102,179,128,129,"
DO PAUSE WI1Th ERROR()
RETURN
ENDIF
$-- reset glabal varieble
gn_error=0
$-- Try the coeeand agan
RETRY
RETURN

5

§ EOP: Multerr

PROCEDURE Trace
t Desc: Trace procedure - io et propraacer brow what sodule
' 15 about to execute and what eogule has executer.
PRRAMETERS p_msg, o_iv)
f-- Paraseters : p_ssg = eessage line, p_ivi = traze level
lc_msg = p_2sg
In_ivl = p_lvi
le_trp=s" "
IF gn_trace < In_lv!
RETURN
ENDIF
DEFINE WINDOW trace FROM 5,0 10 16,75 DOUBLE
ACTIVATE WINDCR trace
DO WHILE l¢ trp ¢ 07
LLEAR
€ 2, 40-LENIc_meg)/2 SAY ic_psg
£ 4,05 SAY 'S - et trace level, D - Display status, M - dieplay MNesory’
€ 5,05 SAY 'P - Tyrn printer on, @ - to Guit’
le_trp = 'O
€ 5,38 BET lc_trp FICTURE /*
READ
DC CASE
[ASE lg_trp = '8
€ 2,00 CLERR
8 2,33 BAY 'Set trace level’
€ 4,05 SRY 'Enter trace level tc charge to:” BET on_trace FICTURE ‘¥
€ 5,05 sav '
READ
IF gn_trace=}
€ 2,00 CLEpH
£ 3,08 S&Y "Traze 15 ncw turned oft,.Tp reaztivete Trazo - Frese [F3)
4,05 say 'Presc any key to ontinue...
waiv
Ok BEY LBBEL FJ gr_trace -
ENDIF
CASE Jc_trp = "I
DIsPLAY STATUS
WAIT
CASE fc_trp = ‘¥
DISPLAY MEMCRY
WAIT
CASE fc_trp = 'P°
SET PRINT Ok
ENDCASE
ENDLD
SET PRINT OFF
RELEASE WINDOW trace
€24,79 5pY * "
RETURN

£0

§ £0P: Trace

PROCEDURE PrantSet

$-- Initialize variabiss
ge_dev="CON

1c_thoices” *

gn_pkey=0

gn_send=3

DEFINE WINDON printeer FROM (8,2% 70 17,52

DEFINE POPUP SavePrin FROM 10,40

DEFINE BAR 1 OF SavePrin PRDMPT * Send gulput to,.." SKIF

DEFINE BAR 2 OF SavePrin PROMPT REPLICATE(CHR!194),24) SK1P

DEFINE BAR 3 OF SavePraip FROMPT * CON: Conscle® MESSAB: “Send output
DEFINE BAR 4 OF SavePrin PROMPT " LPTi: Parallel port | ¥ MESSABE “Sen
LPTL:?

-3
-
b4
~

ta
d outpy

o Screen?®
-

s

DEFINE BA® S OF SaveFrin PRONFT * LPT12:; Parallel pors Z° MESEREE "Send cutput iz
¥

LPTZ:*

DEFINE BAR & OF SaveFrin FRONFT ® IGMI: Serial por: §" WESS&EE *Send output to
Conts®

DEFINE ®RR 7 JF Savefrar PROMPT * FILE = REFCRT,.TXT" MESSARE “bene cutput o
File Report.txt" i

ON SELECTICN POFUP taveFrain D2 get_cele

ACTIVATE POFUP SavePri-
RELEASE PLFUF SavePrin

. gn_pkey=sLASTYEY()
IF gn_send = 7
ge_dev = "IXT”
SET ATERNATE TO REFLRT.TMY
SET ALTERNATE ON
FOUNCT, {gn_send = 3 (OR, LASTEY() = 27,
¢ dav = 'PRK’
tesp = SUBETRI™ LPTHLRTZOON! *, {ign_cena-Ti-1)44.4)
0K ERROR DO pretriry
SET PRINTER 70 teep,
If gn_prey O 07
SET PRINT ON
ENDIF
O ERROR
ENDIF
ENDIF
RELEASE WINDOM printeap
RETURN

PROCEDURE pratriry
PRIVATE lc_escape
1¢_escape = SET("ESCAFE®)

b

T Y
~ 'j\ -

PRy e

IF NG, PRINISTATUS()
IF lc_escape = "ON°
SET ESCAPE GFF
ENDIF
gn_pkey = 0
ACTIVATE NINDOK printesp
€ 1,0 SAY *Please ready your printer or’
£2,0 SAY® prese ESC to cancel®
DO WHILE { .nCT, PRINTSTATUS()) .AKD. gr_pkey /¥ 27
gn_pke, = INKEY()
ENDDD
DEACTIVATE WINDOW printesp
SET ESCAPE &ic_escape.
IF gn_pkey O 27
RETRY
ENDIF
ENDIF
RETURN

$ EOPs PrintSet

PROCEDURE Position

IF LEK(DEF()) = ©
DD Pausz WITh "Datadase rot in use, ©
RETURN

ENDIF

SET SPACE ON

SEY DELIMITERS CFF

« In_type=0 &k sudleve]l selection

In_rkey=READKEY() &Y test for ESC or Returr
In_recsKECKZ() &8 DBF record runber

In_nyss=C U for anpot of 2 puster
1d_datesDATE!) 8L for ynplt of 3 date
le_optacn="(4% ma:n opticr g2, Seev, Soio and Licate

$-- Scope 1e. ALL, REST, NEX7 (>
STBRE SPACELLC) T3 1o scp

$-- 1 = Character SEEN, 2 = For clause, 7 = Rhile clatse

STGRE SPACE{40) T lc_1rt, 1o dnZ, lc_inl

lc_teap="*

£ 0,00 SAY ®Index order: *+1F{*'=CRDER{),"Datebase 1s 1n natural order® ORLEZR{})

£ 1,00 SAY "Listed below are the first 1 fields.’
Tc_tesp=REFLICATE(CHRI19),19)
£ 2,0 SAY CHR{218}41z_tesp+CHR{194}41c teap+ChR(1S4)¢1c tezpelHRI194 1 tenp
In_nua=240
DO WHILE In_nue ¢ 560

le_teap=FIELD((ln_nue-240}/20 +1}

€ (In_nun/BC),M0D{1In_nus, B0} SAY CHRI179)+;
lc_tesp+SPACE{11-LEN{ic_ teap})4;
SUESTR{"= Char = Date = logic = Nue = Float = Mees '
AT(TYPE(lc_teep), COLNFMU*}4B-7,8)

In_nus=1n_nue*20
ENDDC

In_nue={

DEFINE POPLP Positi FREM 8,30
¢ DEFINE BAR | OF Pesit! PROMFT * Position by " S¢IP
DEFINE BAR 2 OF Posit) PROMFT REPLICATE(CHY!195),15) SMIP
DEFINE BAR 3 OF Posit! PROMPT * SEEX Record” MESSAGE °Search on index key™ SKIP
- FOR **=ORDER()
DEFINE BAk 4 OF Pocisd PROMFT ® GDTC Record” MESSASE "Position to specidic record”
DEFINE BAR 5 OF Posit! PROMPT * LNCATE Reccrd " MESSABE *Lozate record fer
conds tion®
DEFINE BAR 6 OF Posail PROMFT ° Return® MECSAEE "Return without pesitioning'
ON SELECTION POPUF Positl DO get_sele

7 SET CONFIAM ON
DO WHILE lc_optaon='0
ACTIVATE POFUF Peesitl
lc_option = itrisistr{gn_send)) & for popur
1F LASTKEYY) = 27 ,OR, lc_option="4*
§0T0 In_rec
EXlY
ENDIF
D0 CASE
CASE ic_option='d
¥-- Seel
IF LENINDX(1))=0 (AND, LEK/MDAIS))=0
00 Pause WIT- *Can't use this opticn - Ko irder files are oper,'
LocP
ENDIF
In_type=!
le_In1=CPACE(40)
DEFINS WINDOR Fosi®2 FROM 8,39 70 15,42 DCLRLE
ACTIVATE WINDOW Pesitl
€ {,1 SAY “Erter the type cf erpressions® BT Ip_typs FIDT 0 RANIE 1.3
€ 2,1 SAY “{li=:character, 2=n.mer.c a~d Tsdats,!)
§ET CURSCR ON
Resl
SET CURSCR [FF
1F NET, (READMEY{) = 12 ,OR. READMEY() = 188}
SEY CONFIRM N
€ 3,1 SAY “Enter the key expression to search for:®
IF In_types=3
€ 4,1 BET 14 _date FICT "€D°
ELSE
IF la_type=2
€ 4,1 GE7 la_nue PICT "HIRHIMEEY’
ELSE
. € 4,1 6ET lc_ind
ENDIF
ENDIF
SET CURSOR ON
READ
SET CURSOR OFF

b3

SET CONFIR® OFF
IF .NGT. (READKEY{) = LI ,CR, REQDREY() = 2¢8)
l1c_texp=11F{in_type={,"TRIN{Ic_Inl)", IIF!In b
SEER &lc_tesp,
END:F
ENDIF
RELEASE WINDONS Fositl
CASE lc_option="4'
-~ Boto
In_type={
DEFINE POPUP Posit2 FROM §,3C
DEFINE BAR § CF PcsitZ PRONPT * 6010:" EKIP
DEFINE BAR 2 OF Pocit? PROMFT REPLICATE(CHR{196),1() 8KIF
DEFINE BAR 3 OF Posst2 PROMPT * T0P* MESSASE "60T0 Top of File®
DEFINE BAR 4 OF Ppsit2 PROMPT ® BOTTOM® KESSAGE GO0 Hottom of File”
DEFINE BAR 5 OF Posit2 PRONPT * Record # * MESSASE °BCTO 8 Specific Recorc”
ON SELECTION POPUF Posit2 DC get _sele
ACTIVATE POPUP posit?
In_type = gn_send
IF LASTREY{) O 27
IF In_typesd
DEFINE WINDOW Posii2 FROM B,26 10 13,%0 DOUELE
ACTIVATE WINDOR Pos:t2
12 _huas?
£ 3,1 SAY "Max, Record ¥ = "+LTRIM{STR{RECCDCNTINY)
€ 1,1 SAY *Racorc to GOTO" BET In_num PICT “S3BEEY" RANGE | RECCOUNT!
SE7 CURSOR ON
READ
SET CURSCR OFF
IF NOT. {FEAIKEV{) = 12 ,CR, REALYEV{) = 24B)
6279 in_nua
ENLIF
KELEASE RINDDWS FPosytl
ELSE
Yo _tegp=11F {1~ type=3,*TCF" "ROTTON")
BETT &l _tesp,
ENCIF
ENDIF
CASE 1c_optinn='3
1-- locate
CEFINE WINODW Posit2 FROM 8,.¢ TO 14,66 DOURLE
ACTIVATE WINCON Posit2
1,19 SAY *je. ALL, NEXT {(n}, and REST*
€ 1,00 SAY "Scopes” BET lc_scop
€ 2,01 SAY *For: " BET 1c_In2
3,01 SAY "Nrales® GET lc_ind
SET CURSOR ON
READ
SET CURSOR OFF
IF NDT. (READKEY{) = 12 ,OR, READKEY{) = 248)
le_tesp=TRIN{lc_szp)
le_teap=lc_teap + IIF(LEN(TRIN(1c_1nZ)) > 0, FOR "+IKIM({ic_la2},"%)

yoe=2,1n_pue",t1d date’))

b4

e

lc_teep=!c_tezp + 1
IF LEN{]e_ters) 3 £
LOTATE tic tess,
ELSE .
D2 Fause WITH *Al) fielgs weve blank.®
ENDIF
ENDIF
RELEASE WINDOW Posit
ENDCASE
IF EOF!)
DD Pause WITk "Record net found.”
60TC In_rec

ENDI®
IF RERDKEY!)=4Z DR, READKEY{)= 2¢8 DR, LASTREY(}=27
le_ontien="0"
ENDIF
ENDDC

SET CURSOR k3r_cursor.
SET DELIMITERS 472 _dely,
SET CONFIRM OFF

RETURM

$ ECF: Position

PROCEDURE RetAct

SAVE SCREEN TC Prowscrilc ArSen,
DEACTIVATE ®INDOw Fuliscr

SET SCCREEDRRD O

RETURN

¥ EOP: Belhct

PROCEQURE Af<Act

CLEAR

SET SCORERDARD OFF

ACTIVATE RINDIR FUliscr
RESTONE SCRZEN FROW Erouscrblz
RELEASE SCREEN Browscrilc Apben,
RETURN

§ EOF: AttAct

PROCEDURE Pastnklip

In_getkey=IMEY()

DEFINE WINDON Tezphelp FROM 3,12 70 19.47

ACTIVATE WINDOK Terphelp

00 CASE

CASE "SEEK® & PROMPT()

$-- HELP SEEX

7 * SEEY (exp>"

?

7 * Evaluates a specified expreseien and attespls tof
7 * find 1ts value in the eazter index of the catabase®
7 * file. FRelurns a lcgrcal true (.7.} 1¥ the index®

6%

IF{CER(TRIM e Indyd > 0.7 WHILE S+TRIM{Ic_Isl) ")

NTICI

ey

E

.
(LS SRS SN IS |
-

7% ey is found, and a2 logical faise {.F.) 1f it it
? " asct found.®

?

? * Exs SEEX CIOD{'11/03/87°) - comverts the'

?° exprescion froe character to date and’

?° then searches for the value in the index”

?

CASE LEFT{LTRIN(FRONPT{]),4) $ "BOT0 TOF BOTY fecc”
$-- HELP EOTQ

? * §0/BOTO BOTTOM/TEF [IN (alias))’

7" or

? * 60/6070 [RECORD} <record nuaber> [IN (alias}}*
7% or

7 * (record nuaber)®

"

? * Positions the reccrd poanter to a specified recors®
2 * or location in the active database file,”

?

(N 107 rovee the pointer to the first record”
7 BGTTOM moves the pranter tc the last record”
?

?2*txs & - aoves the record pointer to rezorg 4°

)

[e

ASE *LOCATE® ¢ PROMPT!)

§-- HELP LOCOTE

7 * LDCAYE FOR <condition) [{scoper}"
2 [WHILE {congitiond)®

Searches the active database file, seauertially,*
for the first record that meets the cpecitfied®
criterza. The functzon FCUND() returns true (.7.)*
1f LICATE i suctesstel,”

* Ext LOCATE FOR 852 = '25° NEXY 5*
" searches for the nex® five records”
cortaining 28 :n the Age field®

ASE "Return® § PROMFT()

ES I JEES BERN P IRFVE IR)
-

7 " Return to action in progress, with or without®
? * positioning the record ponter.®

ENDCASE

In_getkey = INKEY(0)

DEACTIVATE WINDON Teeghelp

RELEASE WINDOW Tempheip

RETURN

§ EOP: Postahlp

FUNCTION Color
‘ -

{ Forsat:
1 COLOR{ <expC>)

bb

t <{exply = NGAMAL, MIGHLIGHT, MESSASES, TYTLES, BOY, INFORMATION,
FIELDE
| or a variahle with 21} colors stare ir 1t
¢ $ Ver: ¢BASE 1.1
]
$ The COLOR{) functien either raturns or sets colors returned with the
. $ SET{attribute") setting
$ ¢ <exol> is a celor siring then null ic retur~ed otherwise the color
§ setting is returned for cne cf dEASE's cclor options
L
t See Also: SET(*attribute®)
!
' ———— ———-
PARAMETERS set_color
PRIVATE color_nue, color_str, cnt

set_color = UPPER{set_g¢olor)
1% set_color = “COLOR®
$- Return standarc, enhancec, border cclers only
RETURN SUBSTR{SET!®attr®}).1, AT(" &°, SET{*attre))}
ENDIF

$- Declare array to parse touler options from SET{"atir"]
PRIVATE color_

PECLARE coler_{B)

$- Determine 1f user 15 restoring colers ve, saving tolers
IF " &* § set_color

color_str = ¥ "+set_cclome®,” & Restore color attradutec
ELSE

celor sir = 5, C4EET{*ATTRIBLTES 447 k: Save color attrisiies
ENDIF

¥-- Stuff array wits :ndivigual coler setiing
color_str = STUFF{zeicr stry A7(" & celer sir,, 4, %)

ent =)

DO WHILE ent += 8
color_sir = SLEETR{celor stry ATL"\". color str) 4!)
color_[cat) = SUBETR{color str, 1, ATV%,%, coler str) - 1)
et = ent o |

ENDDO

IF * & § set _color
$-- Set celor back
SET COLOR 70 ,,bcolor (3], 8k Eorder coler
SET COLOR OF NORMAL T0 tcelor {11,
SET COLOR OF KIBH_IGHT 10 dcolor (2],
. SET COLOR OF MESSABES TD brelor_{4].
SET COLOR OF TITLES 70 &rolor_[S),
SET COLOR OF BCX 10 kealor_[6].
SET COLOR OF INFORMATION 10 &color_ {71,
SET COLOR OF FIELDS TO kcolor _[B:.
ELSE

57

TR A e

$-- Returs coler string regueztel

D CAsE

CASE set_color ¢ "NORMALT
color_nus =

CASE set_color
color_nus =

CASE set_color
color_nue =

CASE set_rolcr
color_nue =

$ "HIBHLIGHT"
2
$
3
$
4
CASE set_golor § "TITLEE"
3
$
)
$
7
$
]

*BORDER”

"MEGSASES®

color_nur =
CASE set_color
tolor_nug =
CASE set_celor

"ROX"

*INFORMATION®
color_nur =
CASE set_cclor
celor_nuk =
ENDCASE
ENDIF
RETURN I1F(* &" ¢ e=t_color, ** cotor_feoler nut])

eI

St R R IR R e R as e ResastLLIISLISNLIILILL
t Progras......s MEDEF
t Author..eusint This 15 an RPPLICATICN DEJECT,

* 'Da‘.e--n-..n! 8-04-91

§ Notice...uuuut Tyze anformation here or greetings o ycur vsere,
$ ¢BASE Ver,...: See Applicat.on menu tc use as sign-on banner.

t Generated by.: APSEN version !.3

$ Descripticn..: user appiication of dive log database,

§ Destription,.: Defines all smerus 15 the systes
BUSELERE RSttt aaR RISt ae T raN RS tastutanaatrissssasusy
FROCEDURE MPDEF

8332320 0RRENRY)

PARAMETER BATON

IF .NOT. BATON="500D"
D0 VIOLATID

ELSE

(31330 bRR0ERR]

IF gl _color
SET COLOR OF NORMA. TO W¢/B
SET COLOR OF MESSASES T0 ®+/N
SET COLOR OF TITLES TO /B
SET COLOR OF HIGHLIGHT 10 RG+/EB
SET COLOR OF BOX TG RE+/6
SET COLOR OF INFORMATION TO B/W

&2

SET COLOR OF FIELDS TG N/G8
ENDIF
CLERR

$-- Sign-on banner

SET BORDER TO

2 5,9 10 16,69 DOUBLE CCLOR RE+/BE

87,10 SAY * $ 3§ WELLOME TO AUTOMATED DIVE L35 VERSION 1,1 8 8 1*

€ 9,10 5AY * This user application allows fcr entering dives, fipd-*

€ 10,10 SAY " ing dive logs for grinting or browzing, and finding and'
€ 11,10 SAY * printing of qualification liste, Security of inforea-®
€ 12,16 SAY * ticn is ensured 1t users keep their giver nusber serure,”
8 13,1C SAY * VYou aust know yper diver nusder to accomplish any of the®
€ 14,10 SAY * systems funzlions. Thant you fcr using ADL [.1t*

€ 5,10 FILL 7D $5,£B COLOR W+/N

€ 24,30 SAY * Press "+CRR{17)4IHR{196)4CHR{217)+" to continue, ¥

gn _akey=IRKEY{50C)

LEAR

§-- Prevents clearing of senus froz cozeands:
$-- SET STATUS and SET SCCREBDARD
DEFINE WINDOW FullScr FROM 0,0 TC 24,79 NGAE
$-- Positios at runtime ane batch preocess
DEFINE WINDD® Savescr FROM 0.4 TC 21,75 NONE
t-- F1 Help
DEFINE WINDOW Helpscr FROM 0,0 TO 21,79 NOKE
IF gn_AnBens!
$-- Are you sure? {exit applicatier)
DEFINE KINDOR Evit_fpp FROM 14,17 TO 135,62 DOUELE
$-~ Pause message box
DEFINE WINDOR Fause FROM 15,00 70 19,79 DOURLE
ENDIF

ACTIVATE WINDOW FullScr

£ 24,00

€ 23,00 SAY *Loading..."

SET RORDER 10 DOUBLE

t-- Bar

DEFINE MEWNU USERBAR MESSABE "Select ar option with the arrow keys arng push
ENTER,®

DEFINE PAD FAD_L OF USEREAR PRCMPT "Dive® A7 1.t
ON SELECTIUX PAL PAD_1 OF USERBAR DC ACTO!

DEFINE PAD SAD_2 OF USERBAR PRCMPT *Log“ AT 1,10
ON SELECTION PAD PAR_2 OF USERRAR DD ACTO!

DEFINE PAD PAD_3 OF USEREAR PRCMPT *Quals" AT §,18
ON SELECTION PAD PAD 3 OF USERBAR DO ACTH!

DEFINE PAD PAD_& OF USEREAR PROMFY "Exat" A7 1,28
ON SELECTIGN PAD PAD 4 OF USEREAR DO ACTO!

el l.l

SET BORDER TC DOUELE

$-- Popup

DEFINE POPUP DIVE FRCM 2,1 75 4,17 3

MESSAGE “Fress ENTER to continvefenter z dive or else --» {arraw ey)®
DEFINE BAR 1 OF DIVE PROMCT *Ente- 3 dive

ON SELECTION PCPUP DIVE DG ATT(2

7'; l.l

SET BORDER TD DOURLE

$-- Popup

DEFINE POPUP LOB FROM 2,10 70 6,29 &

MESSABE *Choose an option with arrow 1eye ard push RETURN or else wse -~ (arrcw key)’
DEFINE BAR § OF LOE PRONPT *Find a3 log"

DEFINE BAR 2 OF LO5 PROMPT "Browmze found log*

DEFINE BAR 3 OF LOS PROMPT “Print ‘gunz log®

EIERRRREE4

ON SELECTION POPUP LOE DD ACTOZ WITH “€00D*

§313230887001

')') l.l

SET BORDER T3 DOURLE

$-- Popup

DEFINE POPUP QUAL FRDM 2,18 75 5,42

MESSABE "Use arrow keys to selsct an option and press KETURK or elge --> farrow keyel”
DEFINE BAE 1 OF QUAL PROMPT *Find 3 gual list’

DEFINE BAR 2 OF GUAL PROMPT ®Frant found qual list®
18888118881

ON SELECTION POPUP QLAL LD ACTO4 WITH *60ODC

HE3RT1EE3 T

?? l'l

SET BORDER 10 DOUR.E

$-- Popup

DEFINE POPLP EXIT FROM 2,28 TC 4,4° ;

MESSAGE ‘Position: “+CHRI27V4CHR{26;+CHRI25)4CHR (244 Selece:
"$CMR{17)4CBR{1G6)4CHRI21T)+" Helps FY'

DEFINE BAR | OF EXIT PROMPY “Return to DPASE 1y

DN SELECTION POPUF EXI™ DO ACT(S

?'} l.l

1880780 E2820841

ENDIF

133233300000 001

RETURK
§-- £0P: MPUEF.PRS

FROCEDYRE {HELP!

In_key=INKEY()

ON XEY LABEL F1

lc_popaenu=lIF{ ** = POPUP(), MENG!), POPUFY))
ACTIVATE WINDOK Helpstr

SET ESCAPE OFF

ACTIVATE SCREEN

80,0 CLEAR T0 21,79

€ 1,0 TC 21,79 COLOR RE+/6R

§ 24,00

10

€ 24,3% SAY "Fress any xey to contirze...t
€ 0,004y "

DG CASE

$-- help for seny ¥
CASE “USERBAR" = It

$-- hel; for genu DIVE
CASE *DIVE® = lc_popeent

€ 2,2 SAY "Nz Help definel.”
$-- help for senu L06
CASE *LO8" = lz_pcoaeny

€ 2,2 8AY "Nc Hel; defined.”
$-- help for menu BUAL
CASE *QUAL" = Jc_popaany

£ 2,2 SAY ™No Help defined.”
§-- help for eenu EX:T
CASE "EXIT" = lc_popmenu

€ 2,2 SAY *Nc Help detfsred.'
CTHERWISE

€ 2,2 SAY "Unk~own aenu naee, help was never cefined.”
ENDCASE
In_key=INXEY{()
SET ESCAPE CN
£ 24,00
DEACTIVAIE WINDCR Helpstr
ON KEY LABEL F! DO fHELPY
RETURN
§-- EOP: LRELPY

R R e Rt Ry iRRRs i iRRessinssaiResitatssitinsiipesisll
§ Progran......: USERUAR,FRE

$ Author.....aid This 2t an APPUICATION DEJECT,

§ Date..uuvoiies 8-04-91

§ Nctice......ot Type anforeaticn here or greetings to your users,

¥ dBASE Ver,...: See Aprlication senu te yse as sign-on banner.

§ Senerated by,: APBEN version 1.3

$ Description,.: FIRST MENU LEVEL IN USER APPLICATION.

§ Description.,: Menmy actions

e ERgeed s paa iR iRt i s biRinsibassieeseititetititissiittifisei
PROCEDURE USEREAR

PARAMETERS entryflg, EATON

PRIVATE gc_prognus

gc_prognum="01°®

SET COLOR OF NORMAL TO W+/B

CLEAR

PRIVATE 1c_ApGen

lc_ApEen=LTRIM(STR{gr_Apben))

1)

PP e L

DO SETOL

If gn_error 3 0
gr_errarsh
RETURK

ENDIF

t-- Before menu coce

ACTIVATE MENU USEREAR
€ 0,0 CLEAR 70 2,7¢
$-- After senu

RETURN
1-- EOP USERBAR

PROCEDURE SETCY
ON XEY LABEL F! DO LHELP!

D0 DEFO! &k cpen senu jevel datadase

IF gn_error = 0

IF gl _color .AND, NOT. SETO*ATTRIBUTE®) = "Re/B,RS+/BZN/R "+
CHR{32)4CHRI38)+" We/N,u/B,RE+/CB, B/K N/ER
SET COLOR CF NORMAL TC W4/
SET COLOR GF MESSABES 10 We/N
SET COLOR DF TITLES T8 W/B
SET COLOR OF HIGHLIEMT TO RG+/GR

. SET COLOR OF BOX 1€ R3+/6E

SEY COLDR OF INFORMATICN TO B/¥
SET COLOR F FIELDS TO N/GE

ERDIF

SET EORDER TO
€ 0,0 T0 2,79 DOJBLE COLOR RG+/GE
£ 1,3 CLEAR TO 1,7¢
€ 1,1 FILL TC 1,76 COLCR We/N
1,1 SAY *Dave" COLOR W/N
1,10 SAY *Log> COLOR K+/N
1,18 SAY *Guals® COLOR We/N
€ 1,28 SAY “txit" COLOR we/N
ENDIF
RETURN

PROCEDURE DEFO!

CLOSE DATABASES

$-- Open menu level view/database

lc_sessage="0"

0N ERROR lc_eessage=LTRIM(STR(ERROR{})}+" "+MEEBAEL()
USE DIVE.DEF

n

ON ERROR
gn_error=VAi{lc_message;
IF gn_error > ¢
DD Pause WITH ;
Error cpening DIVE,DEF
¢ _new="Y’
RETURN
ENDIF
lc_new="Y’
RELERSE lc_eessage
RETURN

PROCEDURE ACTCY
$-- Begin USERBAR: BAR Menu Actions,
$-- {before ites, action, ang after iter)
!
PRIVATE lc_new, lc_gbt
lc_newz" *
lc_dbt= °
DO CASE
CASE *PAD_I° = PAD()
le_new="¥'
DO DIVE WITw * (1"
CASE *PAD_2° = FADI)
le_ren="Y’
DD LOS WITH * 04"
CASE °PAL 3' = FAL{)
lc_new='Y'
DO QLAL KITH * 01"
CASE *PAD_4° = PADY)
e _news'Y’
DC EXIT RITH © ¢f”
OTHERKISE
& 24,00
@ 24,71 SAY “"Thic 1%er has no action, Fresc a ey’
2=IRKEV ()
8 24,00
ENDCASE
SET MESSRSE 10
IF gr_quit="0’
IF LEFT{entryflg) = "B*
DEACTIVATE MENU
ELSE
DEACYIVATE MENL &Y USEREAR
ENDIF
ENCIF
IF 1o _news'Y’
le_file=*SET 4g¢_prognue
DC tlc_tfile.
ENDIF
RETURN

AT e

i

R iR R Rt iR a i RRg e n Rttt ieR ey Ratsieesbiiiisiotessisisitissiites]
t Progras......: DIVE.PRS

$ Authoreseseass This 15 an APPLICATION 2BJECT,

§$ Date.vovaansst B-04-94

t Notice.......: Tvpe inforeztion here or greetinge to your users,

$ dBASE Ver....: See Applicatios menu to use as sign-ca banner,

§ Benerated by.: APEEN version 1.3

$ Description,.: User pcpup for entering a Jive,

$ Destription..: Menu acticns

33 e R Re Rt R iyeiottitesiiiessiinsisntsssdtitiosieistiiaiississ)
PROCEDURE DIVE

PARAMETER entry!lg

PRIVATE gc_prognua

gc_prognua="02"

DO SE¥02

IF gn_error » 9
gh_error={
RETURN

ENCIF

§-- Betore menu code

ACTIVATE PCPUP DIVE
§-- After aery

RETURN
$-- £0P DIVE

PRCCEDURE SETO2
OK KEY LAEEL Fi DD {HELF!

DG DBFO2 4% open senu level da‘abase

IF gn_error = 0
IF gl color AND. NCT. SET(*ATTRIBUTE®) = *We/E,RE4/BE,N/N '+,
CHR(3B)4CHR{3B)4* W¢/N,W/B,RE+/6%,B/K,N/ER"
SET COLDR OF NDRMAL TO W+/B
SET COLOR OF MESSAGES TO We/N
SEY COLOR OF YITLES 10 W/B
SEY COLOR OF RIGHLIGHT TO R6+/6E
SET COLOR OF EOX TO RG+/GE
SET COLOR QF INFORMATION TO B/W
8EY COLOR OF FIELDS 10 N/BB
ENDIF
ENDIF
RETURN

L]

PROCEDURE DEF
CLOSE DATREAS
$-- Upen sent
1g_gessages"(”
ON ERROR lc_pessage=LIRIMETR{ERROR.}}j+" “#MESEABED]
USE DIVE.DEF
P - DN ERRDY
gn_error=VAL{lc_sessage)
If gn_error ¥ 0
D2 Pause KiTH &
*Error uoen1r" JIVED
ic_new="Y
RETURN
ENDIF
Jc_new="Y’
RELEASE lr_gessage
RETURN

n
(3]
} &)
i
i

eve: view/dztahaze

PROCEDURE ACT(Z
$-- Begin DIVE: POPL® Nenu frtiore,
t-- {be‘ore iter, action, and afler itex)
]
PRIVATE ¢ _new, ic_got
Ic_news' ’
lz_dhi=’
DO CASE
CASE BAR!) =
1P NOT, gl tatch
D3 vethct
Ehu‘r
SEY SCORTESARD DA
SET MESSAGE TG
f-- Decre attach formed file LIVEFGEM
SET FORMET 10 LivEFCRY
ARFING

$-- clese forgad 4:le ec 2g not o affect FLal's
SET FORMAT T
SET SCOREBONRD OFF
IF NGT, g} _batc!
DC Afthct
ENDIF
ENDC4SE
SET MESSASE T0
IF go_quat="8"
IF LEFT{entrytlg,l) = 8"
. DEACTIVATE MENU
ELSE
DEACTIVATE FOCUF k& DIVE
ENDIF
ENDIF
IF lo_new="Y’

jc_fales"SET +gz_prognur
DO kic_tile.
ENDIF
RETURN
Rt iR R R R Rt itRRanaiainesisistsdssitstitissitii
¥ Progras......: LOE.PRE
$ Authore,.euast Thie 15 an APFLICATION DRJECT,
§ Datevssesrasst B-04-91
§ Notice.......: Type inforsation here or greetings to vour users,
$ dBASE Ver,...: See fpplication meny tc use as sign-on tanner,
§ Benerateg by.: APBEN version 1.2
§ Description..: Log popup 1n user applicaticn of dive log

$ Description.,: Menu actions

R Rt Rttt it s iR iias ki iRantsasinsitsiniasiitiisitiiti
PROCEDURE LOG

PARAMETER ertryflg

PRIVATE gc_progrua

gt _prognua="03"

DO SETHI

1F gr_error 5 0
gn_errors{
RETURN

ENDIF

§-- Before eeny code

ACTIVATE °CRUP LOE
h!ter geny

RETURR
¥-- EOP LOE

PROCEDURE SET(3
ON KEY LAEEL Fi DB 1RELD!

DG DBFOT &% open menu level datalase

IF gn_error = 0

IF gl coler (AND. (NOT, SET{*ATIRIBUTE®) = "Ne/BRG4/BE,N/N *+;
CHRI38)+CHR{3E)+" W+#/N,W/B,RE+/68,E/K N/ER®
SET COLOR OF NCRMAL TG We/p
SET COLCR OF MESSASES 1O We/N
SET COLOR OF TITLES T0 W/E
SET COLOR OF HIGHLIGHT TO RG+/ER
SET COLOR OF EDX 10 RE+/6R
SET CULOR CF INFORMATION TO B/R
SET COLOR OF FIELDS 10 N/GY

ENDIF

ENDIF
RETURN

PROCEDURE DEFO3
CLOSE DATABASES
$-- Open seny level view/database
lc_message="0"
ON ERROR lc_message=LTRIM{STR(ERRCA{})}¢" "4MEESRBL!)
USE DIVE,DEF
ON ERROR
gn_error=VAL(lc_aessage)
IF gn_error > ©
D0 Pause WITH 3
*Error opening DIVE,DE®"
le_new="Y’
RETURN
ENDIF
lc_news'Y"’
KELEASE lc_sessage
RETURN

PROCEDURE ACTOS

§-- Pegin LOE: POPUP Meru Actiors.

$-- (before ites, action, ant after itee;
!

133818830834 8880 81

PARANETER BATON

IF NOT, BATON="BICE®
DO VIOLATIE

ELSE

sapsressnLIsRIsIInY

PRIVATE lc_nes, ic ¢t
lc_news"
1 _dbé="
Be CASE
CASE BAR{} =1
IF .NCT, gl batch
D0 BefAct
ENDIF
SET SCOREBOARD ON
SET MESSAGE 10
SEERLLRLRIRLLRRBIBIRLLILLAILY
DD JDINL.FRE WITH *60QD*
SERLITRRRILINLANSSLIARLLNLIN
SET SCOREBCARD OFF
If .NQT, gl _batch
DI Afthzt
ENDIF
CASE BAR() = 2
$-- Open ltes level view/database and indexes

CLOSE DATABASES
1c_dbt="¥"
ic_gessage="{! .
ON ERROR 1c_eessage=LTRIM{STR(ERRIR{)))47 *4MESSABEL)
USE TEMP.DEF
DN ERROF
gn_error=VAL{lc_sessage}
IF qn_error > 0
DC Fause WITF
*Error opening TEMF,DEF"
gn_error=0
lc_file="SET"4gc_prognus
DO klc_file.
RETURN
ENDIF
1 news"Y'
RELEASE lc_gessace
If JNDT, gl _batch
20 Bethct
ENDIF
SET MESSAGE TO
$-- Desc: Report
REPORT FORM LOS_REPD PLAIN
WAlT
IF NCT, g} batch
DO Afthct
ENDIF
CASE BAK() = 3
$-- Open ltee level view/gatatase and inlexes
CLOSE DATABASES
le_dbt="Y’
lc_sessage="(0"
ON ERROR 1c_tessage=LYRIM{STR(ERROR!) 14" *+MECSALE!)
USE TENP,DEF
0N ERRCZR
gh_error=vAL(1c sessasz)
IF gn_error €
DD Pause RITH &
*Errcr cpening TEMP,DEF®
gn_error=0
lc_file="SET"+gc_prognue
D tlc_tile,
RETURN
ENDIF
le_new="Y"
RELEASE 1z _sessage
If .NOT. gl_batch .
DC BefAct
EXDIF
SET MESSABE 10 5
$-- Desc: Report
SET PRINT O

78

SET PRINT OFF
If NOT, gi_batch
DO AftAct
ENDIF
ExCase
SET MESSAGE TC
IF ge_quit="0"

IF LEFT{entrytlg,1} = "B*
DEACTIVATE NERY
ELSE
DEACTIVATE POPUP &b LOG
ENDIF
ENDIF

IF lc_news'Y’
lc_file="8ET"+ge progrue
D0 &lc_file,

ENDIF

IF lc_dbf="Y' AND. .NOT. Iz _news'¥’
lc_tile="DBF+gc_prognux
00 klc_fale.

ENDIF

$IsettReILLLLILL

ENDIF

SEIESILIIIILLSLNY

RETURN
A E et R R Rt Ry e aatysieRtedibbesiRotsiiissisietisaiiitsith
¥ Progras......: GUAL,PRS

$ Author..ouvius
 SVEL LU
§ Netizeaoninnns
§ dBASE Ver....:
§ Sene-ated by.:
t Description..:

Ttis 15 an AFPLICATION CGEJECT.
g-{2-91

Type inforeatior her2 or greetings o yeur users,
See Aprlizat.or eeny to use a3 siga-on tanner,

RPSEN vereien 1.3

aual poper for aser apsiicatien for caove log,

t Descriptior, s Menu actions

R RRae e iRt Rasiiassiiasiissiesiisiissitiesiiiiassisss
PROCEDURE QUAL

PARAMETER entryiln

PRIVATE gc_prognue

gc_prognue="04"

DO SETO4

IF gn_error > 0
gn_error=0
RETURN

ENDIF

§-- Before sent code

79

ACTIVATE POPUP QUAL
§-- RAiter eeny

RETURN
$-- EOP QUAL

PROCEDURE SETO4
OK KEY LABEL Fi DU IHELFY

DO DBFO4 &% open aenu level database

If gn_error = 0
IF g)_color .AND, .NDT. SET(*ATTRIEUTE") = "Ne/E.KG+/BE,N/N "+
CHK{3B)4CHR{3B1+" W¢/K,W/B,RE+/ER,B/NN/BE"
SET COLOR OF NORMAL TG W+/B
SET COLCR OF MESSAGES TO ®+/N
SET COLOR OF TITLES T0 W/B
SEY COLCR OF HISHLIGHT T2 RG+/GR
SET COLCR CF BOX 70 RE$/GE
SET COLOR OF INFORNATION 70 B/W
SET COLOR OF FIELDE 10 N/BY
ENC!
ENDIF
RETURN

PROCEDLRE DBF (4
CLOSE DATABASES
§-- Open menu level view/database
‘c_aessage="0"
_ ON ERROR Jc_eessage=LTRIN(STR(ERRCR1}) 4+ *+MECSABEL)
USE DIVER,DEF
ON ERROR
gn_error=VAL{lc_message;
If gn_error > €
DC Pause RITH
*Error cpening DIVER,DEF®
le_rew='Y’
RETLRN
ENDIF
lc_news'Y’
RELEASE lc_message
RETURN

PROCEDURE ACTO4
$-- Begin QUAL: POPUF Menu Actions.
$-- (before itew, action, and after ites)
H
$RESRISLALLLNSY
PARAMETER BATON
If NOT, BATON="500D*
DO VIOLATIC
ELSE

80

32282 L0111

PRIVATE lc_new, lc_gbt
lc_new="
- lc_gbt=" *
DO CASE
CASE BAR{) = |
- IF .NOT. g} batch
: D0 Befhct
! ENDIF
SET SCOREBOARD ON
SET MESSAGE 10
SESLSILRLLASIINILLLS
DC BUALLIST.PRG WITH *630D"
SESLERLRASRANLALLILLL
SEY SCOREBOARD OFF
IF .NOT, gl batch
D0 AftAct
ENDIF
CASE BARI) = 2
$-- Dpen Itez leve! view/database and indexes
CLOSE DATABASES
le_dbt="Y"
lc_sessage="o”
ON ZRROR 1c_message=LIRIN(STRIERROR())}+" *+MEESAEEL)
USE TEMPS.DBF
ON ERROF
gn_error=VAL!lc_pessage!
IF gn_error > 0
D0 Pause WITH ;
*Error opening TEMPELOHF
gn_error=9
lt_f1le="5E1"+qc _progrus
0e %ic file.
KETURN
ExD!
lc_new="Y'
RELEASE lc_message
IF .A0Y. gl_batch
D0 BefAct
ENDIF
SET MESSAGE 10
$-- Desc: Report
SET PRINT ON
. REPORT FORM DUALRPT PLAIN NOEJECT
SET PRINT OFF
IF NGT. ol _batch
DO AftAct
ENDIF
ENDCASE

B!

SET MESSABE 10
IF gc_gquat="y’

IF LEFT{entrytlg, i} = “B"

DEACTIVATE MENU
ELSE
DEACTIVATE POPUP & BUAL

ENDIF
ENDIF
IF 1c_news'Y’

le_f1le="SET 45z _prognue

D &lc_file,
ENDIF
IF lc_dbf="Y" .AND, .NOT, lc_new='Y’

lc_tile="DBF'+gc_prognus

DG &1z _file,
ENDIF
31818 ERR)
ENDIF
EERRRRER]
RETURN
i ERs e iR e s iR niibestiRoitianineesssiiessiatinsiiasitstiniiiny)
$ Program......3 EXIT,PRG
$ Authorioviinet This 15 an APPLICATION DRJECT,
$ Datecioesiiaad 8-04-91
¥ Notice.......s Type inforeaticn here or greetings o your users,
§ dBASE Ver,...: See fpplication menu to use as sigh-gn banner,
$ Benerated by.: APBEN versicn 1.3
§ Descrigtion..:

§ Description, .t Menu actions
R R R ety R siistaiiatitiiassinssiiestitispssify]
PROCEDURE EXIT
PARAMETER entryflg
PRIVATE gc_progrua
9c_prognug="(3"
DO SET05
IF gn_error > 0

gn_error={

RETURN
ENDIF

§-- Before senu code

ACTIVATE POPUP EXIT
$-- ffter senu
RETURN

$-- EOP EXIT

82

PROCEDURE SETOS
ON KEY LABEL Fi DD IHELF!

DG DBFOS &% oper senu level catabase

IF gn_error = ¢
IF ol _color .AND, ,NOT. SET{°ATTRIBUTE®) = *N+/E,RB+/BEN/N "4;
CHR{3B)+CHR3B)+® W#/N,W/B,RE+/62,8/s,N/CE"
SET COLOR GF NORMAL TO W/
SET COLOR OF MESSAGES 70 We/N
SET CDLOR OF TITLER TG W/P
SEY COLOR OF HIGHLIGHT TC RB+/GE
ST COLOR OF EDX TG RB+/6®
SEY CGLOR CF INFORMATION TO B/N
SET COLCR OF FIELDS T3 N/BR
ENDiF
ENDIF
RETURN

PRICEDURE DEF(S
CLOSE DATABASES
§-- Dpen menc level vien/database
lc_aessage="0"
ON ERROR Jc_message=LTRIN(STR{ERROR{}})+" "+MESSASE(}
USE DIVE,DEF
ON ERROR
gn_error=VAL{lc_message)
If gn_error > 0 >
DO Pause WITH
*Error opening DIVEDEFT
lc_new="Y’
RETURN
ENDIF
1e_new="Y’
RELEASE lc_smessage
RETURN

PROCEDURE ACT(S
§-- Begin EXIT: POPUP Menu Actions.
$-- {before itee, action, and after tes)
L
PRIVATE 1c_new, lc_db!
lc_news"
lc_dbt=" "
3EERRR1REEERY
RUN pkzip adldata -» -sIRAZ §.dbt
- 13pFeR13ERR24ES
DO CASE
CASE BAR() = 1
\ $-- Return to caller
gc_quit="g’
IF LEFT{entryflg, 1) > "B°

83

DEACTIVATE PGFUP & EXIT
ELSE
DEACT. 47E MENU
ENDIF
RETURN
ENDCASE
SET MESSABE 10
IF gc_gquit="¢'
IF LEFT{entrytig,1} = *F°
DEACTIVATE MENY
ELSE
DEACTIVATE POPUF &% EXIT
ENDIF
ENDIF
IF lc_new='Y'
1c_f1le="5ET"+gc_prognune
DG klc_file,
ENDIF
RETURN

R R R R R Rt ia R i iai it niagiRsitsaisitsistedifaidtinsiisisisiig
113

$-- Name.......: DIVEFOR¥,FMT

$-- Date..uyoos 8-04-9

¥-- Versien....: dBASE 1V, Forsat i.!

¥-- Notes......: Foraat files use " as deliziters’

LR Rt A R R R iR R R iR ieaniiiiastiinsiniirsiiittistinsititiilg!
1"

t-- Forsat file inatializatien code ------osmmmoemomsmemo oo

$-- Sore of these PRIVETE vsrizbles are crested based on CodeSen and say not

$-- be used by your particular .fet file

PRIVATE 1c_talk, lt_cerser, lc_display, lc_status, lc_carry, lc_proc;
In_typeahd, gr_cut

IF SET{*TALK*} = *ON*
SET TALY OFF
le_talk = *ON*
ELSE
le_talk = *CFF*
ENDIF
lc_tursor = SET(*CURSCR*)
SET CURSOR ON

lc_status = SET{*STATUS*)
-~ SET STATUS was ON when you went inte the Fores Designer,
If lc_status = "OFF*
SET STATUS ON
ENDIF
B4

t-- € SAY BETS Processing,

$-- Format Page: |
€ 0,3 10 £,56 DOUELE
£ 2,6 SAY "Dive data entry fore®

€ 4,5 SAY *fill in the following data cencerning your cive'

€ 8,7 10 19,30

€ 9,8 SAY *diver I.D. number (5SN1:"

¢ 9,38 BET Diver_nue PICTURE "999-99-9993°
€ 10,8 SAY "date of dive:"

£ 10,38 BET Date

¢ 11,8 SAY "serial Inth dive of the day):*
€ 11,38 BET Serial PICTURE *9*

£ 12,8 SAY ®day or mpght:”

€ 12,38 BET N:te_day PICTURE *Xyxyy*

€ 12,44 SRY "dave*

€ 13,8 SAY *fresh or sait:?

€ 13,38 BET Fresh_salt PICTURE "Xxxxx»
£ 13,44 SAY "water*

£ 14,8 SAY *water teserature:’

£ 14,38 GET Teeperatur PICTURE *99°

@ 14,4} SRY “degrees F*

£ 15,8 SAY ’maximup depth of dive:t

8 15,36 BET Lepth PICTURE *§99~

€ 15,42 5AY *feet"

€ 16,8 SAY "average u/w visibility:®

€ 16,38 BET Visibality PICTURE *999*

€ 16,42 SAY “feet”

€ 17,8 SAY “asourt of zir consumeds®

€ 12,38 BET Aar_used FICTURE "5399

8 17,43 SAY Yps;t

€ i8,B SAY *total dive tige:®

@ 18,58 BET 1,00 PICTURE 5,0

€ {€,42 SAY “houre"

READ

§-- Forsat Page: 2

€ 0,2 SAY "Does the site you dived at have 2 systes site nusher?

& 1,4 SAY *printcut) If 1t dces, enter 1t here:®

® i,4z BET S:te_num PICTURE *999*

€ 1.47 SaY *1¢ nat, describe tre site in the'

€ 1 ! SAY "next data field, dive resaris.*

€ 4,2 SAY “dive remarks:®

€ 5,9 6ET Dive_rsbs PICTURE *B5e8

OO OO XXX xxxxy
[OERR0ER 003000030008 9000053F00003533009080880930889¢¢1
X OO XXX XXX XXX xxexex®
€ &£,9 6ET Dive_rexs FICTGHRE *8S6E

DO OO X XXX X
SE999900300 0080008830080 E00830000000880008089988099¢¢

85

{check on current site’

LH400009280000 000008 00080000000 00R0000RR0RRRRTIIT NN
€ 7,9 BET Dive_raks FICTURE "8S:8

2820000080008 58000008000033000000980083430088333¢88¢04
OO XY XXX XXX R EX XXX ARNANNA XX
ISR RIEIRRINEITREINTRIROLIITRRIREIRRITEIIERIIRGE

$-- Forsat file exit code

$-- SET STATLS wac N when you went intc the Fores Desigmer,
IF 1c_status = "CFF* & Entered forz wmath status of!

SET STATUS OFF &% Turp STATUS “OFF® on the way out
ENDIF
SET CURSOR &1z _cursor,
SET TALK &lc_talk,

RELEASE lc_talk,)c_fields,lec_statue
$-- EOP; DIVEFORM.FMT

§ dKASE IV ,PRE h1)e
§ JOINL,PRE {ypine dive.dbf with dive-,dbf and site,db? and stores o
§ for one diver, fields are set for & dive log,!
4113 EER1314]
FARANETER BATON
ON ERROR CANCEL
IF .NOT. BATON = "800
D VIOLATIC
ELSE
EEEREFEREEEEEES

RECEFT "Enter the daver nuater of the diver whos leg you wizh to 4ira:

to nyster

SE7 FIELDS TC
SELECT 1

USE DIVE.DEF AGAIN KOUPDATE

USE DIVER.DEF AGAIN NCUPDATE N 2 ORDER DIVER NUM

USE SITE.DEF ABRIN MOUPDATE IN 3 ORDEF. SITE_NuM

SET EXACT OK

SET FILTER 0 {(A-)DIVER NUM=nusber)) ,AND, FOUND(2) .ANE. FOUND(;
3

SET RELATION TG A-)DIVER NUM INTO B

SELECT 2

SET RELATICN TC A-YSITE_NUX INTO C

SELECT ¢

SET SKIP 10 B,C

50 T0P

SET FIELDS 10 A-DDATE, A~ SERIAL,A-)SITE_NUN A-DDIVER NUM,A-

YFRESH SALT:

JA-INITE_DAY, A=) TEMPERATUR A~)DEPTH, A-DVISIBILITY ,A- JAIR_USED A-DTINE;

8¢

Lern, dbt

LX)
L]

_plinenc=0 Lk 5ot lines tc zerc
$-~ NOEJECT paraseter
1IF gl_noejezt
IF _peject="BEFORE'
_peject="NONE*
ENDIF
IF _peject="BCTR"
_peject="HFTER"
ENDIF
ENDIF

$-- Set-up environeernt

ON ESCAPE D0 Prnabort

IF SET{"TALY*}="D\"
SET TALX OFF
ge_talk="ON"

LSE
oc_talk="0FF"

ENDIF

g _space=SET{"5PACE";

SET GPACE CFF

ge_time=TIME() k& syster tiee for predefined field
gd_date=DATE() &k system date * " ° '
gl_fandl=.F. k% tfirst and last page flag
gl_prattlc=,T, & Contarue printing flag

gl _widow=.7, & flag for cheching widow bande
gn_length=LEN(gc_heading) &k store length of the HERDING
gn_level=2 48 current bard being processed

gn_page=_pagens &4 grat current page numter
an_pspace=_pspacing k& get current print spacing

$~- Set up precedire for paje break
gn_atline=_plengh - { pspacing + 1)
ON PAGE AT LINE gn_atline EJECT PAGE
§-- Print Seport

PRINTICE

§-- Imitialize sumaary variables,
r_ssuei=0

IF gl_plain
ON PAGE AT LINE gn_atline DT Pgolarn
ELSE
ON PAGE AT LINE gn_atline DD Pgfoot
ENDIF
D0 Pghead
g!_fandl=.T. k& first physical page started

88

O

JA-DDIVE_RMKS, B~ FNANE B3N] B-) NANE T-3TVPE C- NRME
SEY FIELDS (N

SET SAFETY GFF

ERASE TEMP,DBF

CCPY YO TEWP,DBF

SET SAFETY ON

13t)ERE4]

ENDIF

BENRSSALLSL8LLS

return

¥ Prograg..ievsvssnedt E3\LOG_REFD,FRE
’ Date-...-uonnontl|: 2'0"91
$ Versions.,...yee00.t CBASE 3V, Report 1.1

§ Frior to running thic procedure with the DO coreand

$ it is necessary use LOCATE because the CONTINUE

§ stateeent 35 an the main loop.

!

§-- Paraseters

PARAMETERS gl npeject, gl _plain, gl_sue2ary, gc_teading, go_extra
83 The first three psrameters are of type Logical,

£3 The fourth parameter 15 a string, The f1ith 15 eutra,

PRIVATE _perect, _wrap

$-- Test for no records ‘ound

IF ECF!) LOR. N2T. FCUND{)
RETURN

ENJIF

§-- turn word wrap mode ot
_wrap=.F,

IF _plength (_pepacang § 6 ¢+ 1} 4 {_pspacang + 1) ¢+ 2
SET DEVICE TO SCREEM
DEFINE WINDCK gw_repert FROM 7,17 10 §1,62 DOUBLE
ACTIVATE WINDOW gw_repcrt
8 0.1 SAY *Increase the page length for this repert.”
€ 2,1 SAY *Press any key ..."
x=INKEY(0)
DEACTIVATE WINDOW gw_repcrt
RELEASE KINDON gw_report
RETURN

ENDIF

87

DC Rintro

$-- File Loop
DO WHILE FOUND{} .ANT, NCT, EOF() .AND. gl_prattlg
gn_level=
t-- Detail lines
IF g1 _sussary
D3 Upd Vars
ELSE
Db _Detail
ENDIF
3l widow=.T, & erabie widow chezkang
CONTINGE
ENDDD

IF gl _prrtflg
DO Rsuex
IF _plinenc (= gn_ztline
EJECT PAGE
ENDIF
ELSE
DO Rsume
DG Reset
RETURK
ENDIF

CK PASE
ENDPRINTJCE

00 Reset
RETURN
$ EOP: B:\LDO_REPD.FAG

$-- Undate sumzsry fielde anc/or raiculated fields,
PROCEDURE Upg_Var:

1-- Sue

r_asuzisr_msuel+TINE

RETURN

§ EOP: Upd Vars

-~ Set flag to get cut of DO WHILE loop when escape 15 pressed.
PROCEDURE Praabcrt

gl_prattig=.F.

RETURN

$ EOP: Prnabort

PROCEDURE Pgheat

2

77 1IF{g! _plain,"* , "Page No.*)} AT 0.
1iF(ql_plain,’ ", _pagenc) PICTURE *999° AT 9,:

Dive log for AT 22,;

89

Fname FUNCTION *T- AT 35,3
Mi FUNCTICN =7® A7 48,:
Lnase FUNCTION *T® AT 8¢
7

$-- Print HEADINE parageter 1e. REPCRT FORM <{nare' HEATING (expt®
IF NOT, gl _plain .AND, gn_length M O

77 go_headang FUNCTIDN "I;Ve+LTRIMISTR{ raa-gan-_lsargin))

?

ENDIF

IF NOT, gl plain
77 gd_date AT ¢
?

ENDIF

?

77 "Date* AT 0.
*S1te nane or lccation® AT 9.
*Airt AT AC,;
"ater® AT 49,;
*Max" AT 80,3
"Wistbility" AT 66,2
"Tise" AT 77

"

27 *Serial” AT 0,:
*used® AT 40,
*teap” AT 49,;
*depth® AT &0

N

RETURN

$ EOF: Pghead

PROCEDURE Rintre
?

RETURN

t EOF; Rintrc

PROCEDURE _Deta:l

IF 5 8 gn_pspace gn_atlire - ! peracirg 8 6+ 1)
IF gl wigow (AND. _plinencel § gn_pspaze > gr_atline +

EJECT PAGE

ERDIF

ENDIF

DO Upé Vars

27 Date AT 0y

Nase FUNCTION *TV30* AT 9,;

Rir_used PICTURE *99399959" AT 40,;

Teaperatur PICTURE "9999999999° AT 49,;

Depth PICTURE *9999%* AT &0,:

Visibility PICTLRE *9999939999* AT &b,;

Tiee PICTURE *999.9* AT 77

)

77 Fresh_salt FUNCTION *T* PICTURE *XXXXXXXXXX* AT 9,3

§0

"Nater,” AT 20,;
Nite_day FUNCTION "T® PICTURE SXXXXXAXX® &7 27
*Dive" AT 3t
?
77 Serial PICTURE "9999°9" AT 0,:
Dive_raks FUNCTION "TV30® AT 9
)
RETURN
t EOP: _ Detail

PROCEDURE Rsuas

77 "Total time:" A1 62,:

r_asusl PICTURE *939.9* A7 77
gl_fandl=.F. & last page finished
?

RETUEN
$ EOP: Rsuma

FROCEDURE Pofcot

PRIVATE _box, _pspating

gl_widow=.F, &b disable widow checkirg
_pspacing=!

)

IF NOT. 3] plain
ENDIF
EJECT PAGE
$-- is the page nusber grzater tha~ the ending page
IF _pagerc ™ _pepage
6070 BOTIC
sKip
g _levelsd
ENDIF
IF NOT, gl _plain (AND, gl _tang!
_pSparing=gn_pspate
D0 Pgread
ENGIF
RETURN
$ £0F: Pofoct

§-- Process page brezk when FLAIN optier :s used.
PROCEDURE Pgniaun

PRIVATE _box

EJECT PABE

RETURN

3 EOP: Pgplatn

§-- feset dBASE envircnaent prior to calling report
PROCEDURE Feset

SEY SPACE kgc_space.

SET TALK &go_talk.

ON ESCAPE

UN PASE

RETURN
$ E0P: Reset

§ dBASE v .OBE file
$ DUALLIST.PRG (101ns diver.db? with qual.dbf and stores to ‘eepf.dh¢
t for one diver, fields are set for a csalification listing.!
831}1188811
PARAMETER BAYON
ON ERRDR CANCEL
IF NOT. BATON="600D"
D0 VIOLATID
ELSE
iR E288881)01
ACCEPT *Enter the daver number ct the diver whes gual list you wmish to find: °;
to nuaber

SET FIELDS YO

SELECT §

USE DIVER.DBF AGAIN NOUPDATE

USE QUAL.DEF ASAIN NOUPDATE IN 2 ORDER DIVER_NUM
SET EXACT ON

SET FILTER TO {{A->DIVEK_NUM=nueber)) .AND. FOUND{2)
SET RELATION T9 A->DIVER _NUM INTG B

SET EKIF 10 &

60 10p

SET FIELDS TO A-)FNAME, A= KT A-)LNAKE,B- BUAL _NAME,B->COMMANY B~
JDATE,E;

=Y INSTRUCTOR,A->DIVER _huM

SET FIELDS ON

SET SAFETY DFF

ERASE TEMPS.DEF

COFY 10 TEMFS,DEF

SET SAFETY ON

113§8303533 81

ENDIF

sesassLsIn

return

§ Program.iiiaicenasst Bi\DUALRPT,FRE

' Date.llltl'ttlllucl: 5‘04'91

$ Versions.....vveuiod OBASE IV, Report .!
]

§ Notes:

$ Prior to running this precedure with the DO coasand
§ it is necessary use LOCATE because the CONTIMUE

$ statesent 1s 1n the eain loop,

' .

$-- Paraseters

PARRNETERS gl noeject, gl rlain, gl_sussary, gr_heading, gc_extra
$% The first three parageters are of type Logical,

§8 The fourth parameter 15 a string., The fifth is extra,

PRIVATE _peject, wrap

§-- Test for no records found

IF EOF(} .OR. .NOT, FOUND(}
RETURN

ENDIF

$-- turn word wrap acde off
_wraps.f.

IF _plength < {_spacang § &+ 1) 4 | pspacing ¢ 1} + 2
SEY DEVICE 7O SCREEN
DEFINE WINDOW gw_report FROM 7,17 7D £1,£2 DOUE.E
ACTIVATE WINDOW gw_report
0,1 SAY "Inrrease the page length for this report,®
£ 2,1 5RY *Press any key ..."
¥=INKEY{0)
DEACTIVATE WINDOW gw_report
RELEASE RINDOW gw_report
RETURN

ENDIF

_shitenos(&k set lines to zers
$-- NOEJECT paraseler
IF gl _noeyect
IF _peject="BEFORE"
_perect="NONE®
EXDIF
IF _pesect="2CTK
_peject="RFTER"
ENDIF
ENDIF

$-- Set-ur environsert
ON ESCAPE [0 Prnabere
IF SET("TALK*}="ON"
SEY TALK OFF
ge_talk="ON"
ELSE
gc_talk="DFF"
ENDIF
gc_space=SET{*SFACE")
SET SPACE OFF
ge_tase=TIME() bk systee time for predefined field

93

gd_date=DATE{) &k cystez date * 0+ " '

gl_fandl=.F, &L firet and last page flag
gl_prntflg=.T, & Continue printing flag
gl_widow=.T, &b tlag for checking widow bands
gn_length=LEN{gc_heading) &% store length of the HEADINS
gn_level=2 &k current bard being processed

gn_page=_pageno & grab current page nuaber
gn_pspace=_pspacing &b get current print spating

§-- Set up procedure for page break
gn_atline=_plength - (_pspacing ¢ 1)
ON PASE AT LINE gn_atline EJECT PAGE

$-- Print Report
PRINTIOB

IF gl_plain

ON PASE AT LINE gn_atline DO Pgplair
ELSE

ON PAGE AT LINE gn_atline DD Pofost
ENDIF

D0 Pghead
gl_tandl=.T, & first physical page started

$-- F1t: Loop
DO WHILE FOUND!{} ,AND, ,NOT. EOF{) .AND, gi_pratflg
“gn_level=0
1-- Detar] lines
IF gl _cueaary
D0 Upd_Vars
ELSE
D0 _Detail
ENDIF
gl_widow=.T, kt enable widow thecking
CONTINUE
END2O

IF gl_prattig
DD Rsusa
If _plinenc (= gn_atline
EJECT PAEE
ENDIF
ELSE
D0 Rsuma
D0 Reset
RETURN
ENDIF

ON PAGE
9%

ENDPRINTJCE

D0 Reset
RETURN
$ EOP: B:\QUALRPT.FRE

$-- Update sussary fields and/or calculated fields,
PROCEDURE Upg_Vars

RETURN

§ EOF: Und_Vars

t-- Set flag to get out of DO WHILE lcop when escaje 1s pressed.

PROCEDURE Prnabort
gl_pratfig=.F,
RETURN

t EOP: Prnabort

PROCEDURE Pghead
2

7 11F(gl_plain,'* , "Page No.* } AT C;
1IF(q!_plain,'", _pageng) PICTIRE *939* 47 9,:
*Bual list for:® AT 2!

)

t-- Print HEADINE paraseter io. REPORT FORM {name: MEADING Zexal»

IF NOT. gl _plain .AND, gp_length > 0

77 gr_heacing FUNCTION “1;V*+LTRIM{STR{ reargir-_lnarqin})

”

ENDIF

77 1F{gl_plain,'',qd_date) AT 0,;
Fnase FUNCTICN “T* AT (8,:
M1 FUNCTION *T* AT 2,;
Lnase FUNCTION *T" AT 34

"

9

2

77 CGUAL NAME® AT 3.3
*COMPANY® AT 17.:

LATE® AT 29.:
"INSTRUCTOR® AT 39

)

RETURN

§ EOF: Pgheag

PROCEDURE _ Deta:l
If gn_pspace < grn_atline - (_pspacing ¥ 6 + 1}
IF gl widow .AND. _nlirenctgn pspace » gr_atline + 1
EJECT PAGE
ENDIF
ENDIF
D6 Upd Vars

93

77 Qual_name FUNCTION *T* AT 3¢
Company FUNCTION *T- AT 17.:
Date AT 29,;

Instructor FUNCTION *T° AT 3§

?

RETURN

$ E0P: _Detail

PROCEDURE Rsuae
gl_fandl=.F, kb last page finished
)

RETURN
$ EOP: Rsuma

PROCEDURE Pgtoot
PRIVATE _box, _pspacing
gl _widow=.F, Lk disable widow checking

_pspacings!
)

IF .NOT, gl _plain
ENDIF
EJECT PASE
$-- is the page nueber greater than the ending page
If _pagenc > _pepage
6070 BOTTON
skip
gn_level=s0
ENDIF
IF KDY, gl plain .AND, gl _targl
_pspacing=gn_pspace
D0 Pghead
ENDIF
RETURN
$ EOP: Pofoot

§-- Process page break when PLAIN option 15 usec,
PROCEDURE Pgplazn

PRIVATE _box

EJECT PABE

RETURN

2 EOP: Pgplain

$-- vaset dBASE enviromsent prior to calling report
PROCEAURE Reset

SET SHACE &gc_space.

SET TALX &gc_talk.

ON ESCAPE

ON PASE

RETURN

$ EOP: Reset

9%

LIST OF REFERENCES

Murray, W., "Security Considerations for Personal
Computers," IBM Systems Journal, pg.27, v.23, no.3, 1984.

Stephenson, P., "Personal and Private," Byte, pg.286, June
1989.

Brown, B., "The Small Data Center," Byte, pg.286, June 1989.

Pfleeger, C., Security in Computing, Prentice-Hall, 1Inc.,
1989,

Giladi, R. and Zviran, M., Centralizing the Data,
Distributing the Processing, Working Paper No. 89-02, Naval
Postgraduate School, January 1989.

National Computer Security Center, Personal Computer
Security Considerations, NCSC Pub WA-002-85, 1985.

National Telecommunications and Information Systems Security
Commitee, Office Automation Security Guide, NTISS COMPUSEC /
1-87, 1987.

Post, G. and Kievit, K., "Accessibility vs. Security: A Look
at the Demand for Computer Security," Computers and
Security, Vol. 10, No. 4, June 1991,Elsevier Science
Publishers B. V.

Gogan, J., "Should PCs Be Personally Allocated?", Journal of
Management Information Systems, Spring 1991, Vol. 7, No. 4,
1991,

Tanenbaum, A., Operating Systems: Design and Implementation,
pp.4-5, Prentice-Hall, Inc., 1987,

Tanenbaum, A., Structured Computer Organizaticn, Prentice-
Hall, Inc., 1990.

Zarger, C., "Is Your PC Secure?" Mechanical Engineering, pg.
57, March 1988.

Mensching, J. and Adams, D., Managing an Information System,
Preritice Hall, Inc., 1991.

97

BIBLIOGRAPHY

Awad, E., Management Information Systems, Benjamin Cummings,
Tnc., 1988.

Bakst, S., "Beware of Potholes on the Path to PC Security,"
The ffice, June 1990.

Boebert, W., Kain, R. and Young, W., "Secure Computing: The
Secure Ada Target Approach," Scientific Honeyweller, July
1985.

Brown, B., "the Small Data Center," Byte, pg.286, June 1989.

Chorley, B. and Price, W., "An Intelligent Token For Secure
Transactions," Security and Protection in Information
Systems, Elsevier Science Publishers B. V., 1989.

U. S. Dept. of Defense, Trusted Computing Sys. Evaluation
Criteria, DOD 5200.28STD, Dec 85.

Giladi, R. and 2viran, M., Centralizing the Data,
Distributing the Processing, Working Paper No. 89-02, Naval
Postgraduate School, January :989.

Gogan, J., "Should PCs Be Personally Rllocated?", Journal of
Management Information Systems, Spring 1991, Vol. 7, No. 4,
1991.

Mehrmann, L. and Amery, C., "Security Fractices for
Information Systems Networks," Security and Protection in
Information SysteaJ; Elsevier Science Publishers B. V.,
1989.

Mensching, J. and Adams, D., Managing an Information System,
Prentice Hall, Inc., 1991.

Murray, W., "Security Considerations for Personal
Computers," IBM Systems Journal, v.23, no.3, 1984.

Murray, W., "Security in Advanced Applications and
Environments," Security and Protection in Informatici
Systems, Elsevier Science Publishers B. V., 1989.

National Computer Security Center, Personal Computer
Security Considerations, NCSC Pub WA~002-85, 1985.

98

Pfleeger, C., Security in Computing, Prentice-Hall, Inc.,
1989.

Post, G. and Kievit, K. “Accessibility vs. Security: A Look
at the Demand for Computer Security," Computers and
Security, Vol. 10, No. 4, June 1991, Elsevier Science
Publishers B. V.

Schultz, J., "Low Cost Security for Personal Computers,"
Signal, November 1989.

Steprnenson, P., "Personal and Private," Byte, June 1989.

Summers, R., "An Overview of Computer Security," IBM Systems
Journal, v.23, no.4, 1984.

Tanenbaum, A., Operating Systems:Design and Implementation,
Prentice-Hall, Inc., 1987.

Tanenbaum, A., Structured Computer Organization, Prentice-
Hall, Inc., 1990.

Walker, S., "Network Security Overview", paper presented at
the 1985 Symposium on Security and Privacy, 1985.

Zarger, C., "Is Your PC Secure?" Mechanical Engineering, pg.
57, March 1988.

99

—

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 52
Naval Postgraduate School
Monterey, California 93943-5002

Prof. Moshe Zviran, Code AS/ZV
Naval Postgraduate School
Monterey, California 93943-5000

Prof. Willsam J. Haga, Code AS/HG

Naval Postgraduate School
Monterey, California 93943-5000

100

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 52
Naval Postgraduate School
Monterey, California 93943-5002

Prof. Moshe Zviran, Code AS/ZV
Naval Postgraduate School
Monterey, California 93943-5000

Prof. William J. Haga, Code AS/HG

Naval Postgraduate School
Monterey, California 93943-5000

100

